Fit.Make
module P : sig ... end
packs an array of (baseline, filter, couplings) into a prm
type
unpacks a prm
into an array of (baseline, filter, couplings)
val log_likelihood : prm -> float
evaluates the log likelihood for a given set of parameters
val loss : prm -> float
evaluates the loss for a given set of parametesr
val fit : ?check_gradient:bool -> ?in_dir:(string -> string) -> int -> prm
fit max_iter
fits the model using BFGS; if ~in_dir
is specified, the decreasing loss function is saved on the fly in in_dir "loss"