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N E T W O R K  S C I E N C E

Efficient communication over complex dynamical 
networks: The role of matrix non-normality
Giacomo Baggio1, Virginia Rutten2,3, Guillaume Hennequin4*, Sandro Zampieri1*†

In both natural and engineered systems, communication often occurs dynamically over networks ranging from 
highly structured grids to largely disordered graphs. To use, or comprehend the use of, networks as efficient 
communication media requires understanding of how they propagate and transform information in the face of 
noise. Here, we develop a framework that enables us to examine how network structure, noise, and interference 
between consecutive packets jointly determine transmission performance in complex networks governed by 
linear dynamics. Mathematically, normal networks, which can be decomposed into separate low-dimensional 
information channels, suffer greatly from readout noise. Most details of their wiring have no impact on transmission 
quality. Non-normal networks, however, can largely cancel the effect of noise by transiently amplifying select 
input dimensions while ignoring others, resulting in higher net information throughput. Our theory could inform 
the design of new communication networks, as well as the optimal use of existing ones.

INTRODUCTION
Reliable propagation of information through networks with unreli-
able nodes is a fundamental problem facing many engineered and 
natural systems. This includes social networks (1, 2), peer-to-peer 
networks (3), gene regulatory networks (4, 5), power grids (6), and 
brain networks (7, 8), to cite only a few. To engineer better commu-
nication networks, make better use of existing ones, or understand 
how natural (e.g., biological) networked systems function, a theory 
is needed that relates the network’s connectivity and dynamics to its 
performance in transmitting information.

Previous work at the interface of network science and informa-
tion theory has been largely restricted to static, feedforward net-
works, in which packets of activity travel one after the other through 
layers of memoryless nodes, with no interference. Examples include 
classic connectionist work where feedforward “neural” networks 
are optimized so their outputs retain as much information as possi-
ble about their inputs (9, 10). These works have influenced how 
neuroscientists think about sensory pathways, which resemble lay-
ered networks of noisy neurons receiving input packets from body 
senses (11). In particular, the neural representations of visual stimuli 
that are found along the primate ventral stream are notably similar 
to those that emerge in deep networks trained on object recognition 
tasks (12). More recent work (13) has drawn a link between deep 
learning (14) and the information bottleneck method (15), a princi-
pled approach to compressive communication. Beyond feedforward 
networks, the effect of recurrent topologies on information trans-
mission was studied in the context of virtual electrical circuits (16), 
but this was restricted to steady states and therefore disregarded any 
potential encoding of information in activity transients.

In most real-world scenarios, however, information does not 
propagate statically (or instantaneously) but dynamically within 
complex recurrent networks composed of non-memoryless nodes. 

The inherent dynamics of the network can greatly affect communi-
cation performance in ways that remain poorly understood. In (17), 
the authors proposed an analytical framework based atop standard 
notions of time-delayed mutual information and transfer entropy 
to quantify the routing of small activity fluctuations propagating on 
top of oscillatory reference dynamics. While their framework al-
lowed them to identify a generic mechanism capable of generating 
flexible information-routing patterns in the network, it is based on 
a small-noise approximation and therefore cannot fully capture the 
impact of noise on network communication. Moreover, the authors 
did not systematically study the role of network topology. Harush 
and Barzel (18) investigated the interplay between the network to-
pology and its dynamics. They found that patterns of information 
are governed by universal laws that depend only on a few relevant 
parameters of the network dynamics. However, the analysis was 
carried out in a deterministic setting, and the proposed information 
transfer metric, which quantifies the sensitivity of a dynamical sys-
tem to local perturbations, lacks an explicit information-theoretic 
interpretation. The work in (19) used Fisher information theory to 
quantify the short-term memory storage capacity of networks gov-
erned by linear dynamics. In investigating this memory problem, 
which is a form of network communication through time, the 
authors were led to study the interactions between single-node dy-
namics, connectivity, and input statistics, similar to the theory that 
we develop here. However, the network received a one-dimensional 
input, and temporal correlations were neglected.

Here, we study the role of graph topology on the quality of infor-
mation transmission in noisy networks with otherwise simple, 
linear single-node dynamics. We establish a novel framework for 
quantifying the maximum amount of information about high-
dimensional inputs that can be transmitted reliably through such 
networks. We apply our framework to various network architectures, 
ranging from simple, structured networks amenable to analytical 
derivations to more complex, disordered, and real networks that we 
investigate numerically. Critically, all the networks that we consider 
here have memory, from which interference arises between the net-
work’s response to multiple packets transmitted in close succession, 
and constitutes a source of internal, structured noise. We show that 
when the amount of noise present in the information channel is 
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large, anisotropic networks that embed directed feedforward pathways 
perform better than isotropic ones. Mathematically, anisotropic 
networks correspond to “non-normal” networks [i.e., networks 
whose adjacency matrices are not normal (20, 21)], whereas 
isotropic networks to “normal” ones. Moreover, we find that these 
non-normal networks can even entirely overcome the effect of 
noise in some limit. Our results provide estimates for the amount of 
information that a network can propagate and insights into how the 
propagation of information depends on key network properties. In 
addition, we discuss how information propagation can be opti-
mized by using specific distributions of input packets. We expect 
our theory to contribute to understanding the behavior of natural 
networked systems, which are often found to be strongly non-normal 
(22). Further dissection of the mechanisms at work in natural 
networks (e.g., single-node dynamics, graph structure, adaptive 
wiring, etc.) may also suggest better engineered solutions to net-
work communication.

RESULTS
Modeling framework
Communication through networks
We consider the following model of a communication channel, 
whereby a sequence of to-be-transmitted packets of information is 
probabilistically encoded in a sequence of input vectors (Fig. 1). 
Information transmission occurs via propagation of the inputs 
through a dynamical network. To obtain analytical, interpretable 
results that hold for arbitrarily complex graph topologies, we assume 
minimalistic dynamics for single network nodes: first-order, 
linear responses to inputs. Specifically, we consider continuous-time, 
linear dynamical systems of the form

	​​
​ dx(t) ─ dt  ​  =  Ax(t ) + B​∑ 

k
​ ​​ ​u​ k​​ δ(t − kT)

​  
y(t ) = Cx(t)

 ​​	  (1)

where x(t) ∈ ℝn denotes the state vector and A ∈ ℝn×n is the state 
matrix. We restrict our analysis to the case of “stable” network 
dynamics, whereby responses to transient inputs do not grow 
unbounded (which would be physically unfeasible) but fade away 
after some time. Mathematically, this means that we require all 
eigenvalues of A to have negative real part.

Each input vector uk ∈ ℝm, independently drawn from an iden-
tical encoding probability distribution p(u), contains the informa-
tion carried by the kth transmitted packet. Each of these inputs is 
then delivered as an impulse [here modeled as a Dirac’s delta (·)] 
that excites the network dynamics in Eq. 1. Transmission of succes-
sive packets occurs every T units of time. The columns of the matrix 
B ∈ ℝn×m define “input nodes” (red circles in Fig. 1), which are the 
only ones affected by the impulse. Likewise, a readout matrix C ∈ ℝp×n 
singles out specific output nodes (blue circles) whose activations 
y(t) are transmitted to the receiver, further corrupted by independent 
Gaussian noise of variance 2. This results in corrupted trajectories  
​​   y​(t)​, which the receiver could use to reconstruct the corresponding 
input packets. In our assessment of communication performance, 
we will consider Shannon’s mutual information as a proxy for 
reconstruction quality (see below), instead of considering explicit 
decoding algorithms.

By reducing the complexity of single-node dynamics to simple 
first-order evolution, Eq. 1 allows us to focus on the effect of net-
work architecture on the quality of information transmission. For 
example, Eq. 1 is known as a “rate equation” in computational 
neuroscience, whereby it has been shown to capture key aspects of 
the dynamics of neuronal networks around fixed points (23). Single 
neurons are often characterized by input/output functions that 
remain approximately linear over their relevant dynamic range (24). 
In that case, A represents the matrix of synaptic connection weights, 
and x(t) is interpreted as momentary deviations from steady-state 
firing rates.

Since each network node is governed by first-order dynamics, 
the network is not memoryless: Activity trajectories elicited by 
previous communications interfere with (in fact, add linearly to) the 
network trajectory carrying information about the current input. 
Thus, for the transmission of a packet at time t = 0 (assuming that 
many packets have already been transmitted), interference contributes 
an additional source of noise i(t), given by

	​ i(t ) = ​ ∑ 
k=1

​ 
∞

 ​​ ​Ce​​ A(t+kT)​ B ​u​ −k​​ 1(t + kT)​	 (2)

where 1(·) denotes the unit-step function, defined as 1(x) = 0, if 
x < 0, and 1(x) = 1, otherwise. This phenomenon, known as inter-
symbol interference in communications, arises in any communica-
tion medium that has some form of memory, including networks 
with node dynamics described by differential equations (25).

In the following, we study the combined effects of the network 
architecture (matrix A), communication time window (T), noise 
level (2), and encoding of input packets under this communication 
paradigm. We begin by establishing an analytical framework to 
characterize the quality of information transmission through the 
network and highlight the trade-off that arises between sending 
packets of information at a high temporal rate and the ability for the 
receiver to accurately reconstruct them. We then summarize our 
analytical results and illustrate them using appropriate network 
architectures.

Input nodes Output nodes

uk y y

nModulator

y y y

Fig. 1. Channel description. A sequence of to-be-transmitted packets of information 
is encoded in a sequence of random vectors uk ∈ ℝm independently drawn from 
an identical encoding probability distribution p(u). Each uk excites the input nodes 
(red) of a complex dynamical network (Eq. 1). The dynamics of this network 
act as a “modulator,” producing activation trajectories y(t) = ∑kyk(t), with yk(t) = 
CeA(t−kT)Buk1(t − kT) being the “modulated” waveform corresponding to the input 
vector uk, in some output nodes (blue). These are further corrupted by independent 
Gaussian noise n(t) before reaching the receiver. The modulator is not memoryless. 
Because of first-order dynamics in each node of the network, patterns of network 
activity elicited by previously transmitted packets linger and interfere with the 
current communication, thus effectively contributing an intrinsic source of 
structured noise that adds up to the readout noise.
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Information transmission metrics
To quantify the amount of information that can be propagated 
through the network channel described above, we use the notion of 
Shannon’s mutual information between the input packet uk and the 
corresponding noisy network output ​​   y​(t)​ observed over the subse-
quent time interval kT ≤ t < (k + 1)T. Denoting by ​​​   Y​​ k​​​ this output 
function (on which intersymbol interference acts as an additional 
source of noise), and assuming stationarity to drop the k subscripts, 
we can write the mutual information (in bits) between u and ​​   Y​​ as

	​​ I​ T​​(u, ​   Y​ ) = ∫ p(u ) du∫ ​p​ T​​(​   Y​ ∣u ) ​log​ 2​​ ​ 
​p​ T​​(​   Y​∣u)

 ─ 
​p​ T​​(​   Y​)

 ​  d​   Y​​	 (3)

where the ·T notation emphasizes the dependence of mutual infor-
mation on the transmission window (a more formal definition of 
the integral over functions ​​   Y​​ in Eq. 3 is given in note S2). To better 
use the channel, the sender can use the encoding distribution p(u) 
that maximizes the mutual information; this optimum defines an 
information metric that is independent of the encoding distribution

	​​ C​ T​​  = ​ max​ 
p(u)

​ ​ ​I​ T​​(u, ​   Y​)​	 (4)

With a slight abuse of terminology, we will refer to this metric as 
information capacity, or simply capacity. Our choice of terminolo-
gy is motivated by the fact that Eq. 4 coincides with the standard 
capacity of a digital communication channel, if the channel is mem-
oryless (26). We refer to note S2 for further details on the relation 
between the channel capacity and Eq. 4.

In Eq. 4, the maximization over the encoding distribution p(u) 
must be performed with an additional constraint on input power 
(input covariance). Theoretically, this is required so that the capac-
ity remains finite [the signal-to-noise ratio (SNR) can be made arbi-
trarily large if inputs can be arbitrarily large, too]. In practice, the 
nodes of any physical network have limited dynamic range, and 
therefore, network inputs must be power limited. Here, we consider 
Gaussian encoding distributions with zero mean and covariance 
Σ ≽ 0 and input power constraint of the form tr(Σ) ≤ 1 (without 
loss of generality; cf. note S3).
An expression for the information capacity
Our main theoretical result is the following expression for the infor-
mation capacity (note S2)

	​​ C​ T​​ = ​ 1 ─ 2 ​ ​  max​ 
Σ≽0,tr Σ=1

​​ ​log​ 2​​ ​  det (​​​ 2​ I + OW)  ───────────────   
det (​​​ 2​ I + O(W − BΣ ​B​​ ⊤​ ) )

 ​​	 (5)

where 2 is the variance of the noise at the receiver, O denotes the 
observability Gramian over the interval [0, T] of the system in Eq. 1, 
and ​W​ is the infinite-horizon controllability Gramian of the dynamics 
in Eq. 1 discretized with sampling time T and input matrix BΣ1/2 
(27). The formal definition of these matrices is reported in Materials 
and Methods and their properties discussed in note S1. Note that 
Eq. 5 still involves a (difficult) maximization over the input distri-
bution (via its covariance matrix Σ); in the following, we perform 
this optimization analytically where possible but otherwise numerically 
using efficient algorithms (see Materials and Methods).

The information capacity affords a few intuitive properties 
(cf. note S3). First, ​​C​ T​​​ always grows with increasing SNR = 1/2. Second, 
​​C​ T ​​​is a bounded function of T that attains its maximum as T grows 
to infinity. This is because, for increasing T, (i) network activations 

left over from previous transmissions have more time to decay 
away, leading to weaker interference, and (ii) longer stretches of sig-
nal are available for decoding, allowing for better estimation of the 
input signal via additional filtering/denoising. Third, ​​C​ T​​​ cannot de-
crease if nodes are added to either the set of input nodes or the set 
of output nodes.

We also note that, in our framework, propagation of informa-
tion through the network occurs over a finite time window T, and 
packets of information can only be transmitted one at a time. Thus, 
a more relevant measure of information transmission performance 
is the number of bits of information about u contained in ​​   Y​​ per unit 
time, that is

	​​ ℛ​ T​​ = ​ 1 ─ T ​ ​C​ T​​​	 (6)

We term this metric information rate. Since the information 
capacity is bounded (because of output noise and intersymbol inter-
ference), ℛT always decreases with T for large enough T. However, 
we will see that there often exists a nonzero optimal transmission 
window T at which ℛT reaches a maximum.

The limitations of normal networks
As we will see later, many high-dimensional networks can be conve-
niently decomposed as a set of parallel, independent communication 
channels, each transmitting information about a one-dimensional, 
scalar quantity. We therefore begin our analysis of the role of 
connectivity in network communication by an in-depth look at a simple 
case, that of a single isolated node (Fig. 2A). With B = C = Σ = 1, and 
A = −a < 0 (where 1/a > 0 is the node’s decay time constant), Eq. 5 
simplifies considerably, yielding the following capacity

	​​ C​ T​​  = ​  1 ─ 2 ​ ​log​ 2 ​​ ​  2a ​​​ 2​ + 1 ─ 
2a ​​​ 2​ + ​e​​ −2aT​

 ​​	 (7)

This expression illuminates some additional properties of the 
information capacity and its dependence on network parameters. 
To begin with, ​​C​ T​​​ grows with the allotted transmission window T 
(Fig. 2, B and C, left). Intuitively, this is because increasing the 
transmission window reduces intersymbol interference, as the node’s 
activity has more time to decay away before the next packet is transmitted. 
However, while ​​C​ T​​​ grows linearly with T for small increasing T, 
it eventually saturates at a maximum value ​​∝ ​log​ 2​​​(​​1 + ​  1 _ 

2a ​​​ 2​
​​)​​​​ that 

grows both with the node’s decay time constant (1/a) and with the 
SNR (1/2). For large enough T, the output noise becomes the 
main factor limiting the capacity and grows increasingly dominant 
during the transmission of a packet as the node’s activity (the “signal”) 
decays exponentially over time. Thus, increasing the observation 
time T cannot indefinitely increase the ability of an ideal observer 
to reconstruct the input packet.

Next, as T increases with diminishing returns on the capacity (cf. 
above), the rate (information per unit time; Eq. 6) is bound to 
decrease (Fig. 2, B and C, right). Thus, keeping the transmission win-
dow very short is the most effective way for a single node to trans-
mit information under time pressure. In this limit, ​​ℛ​ max​​ = ​  1 _ ln 2 ​ ​  a _ 1 + 2a​​​ 2​

​​ 
bits/s can be transmitted.

In practice, though, transmission windows cannot be made arbi-
trarily small. For example, visual information conveyed to the brain 
via the optic nerve fluctuates on a time scale that is limited “at the 
source” by the rate at which objects move in the scene and by the 
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frequency and speed of saccadic eye movements, which determine 
an effective sampling frequency (28). Thus, we now assume a finite 
transmission window T > 0. In this case, there exists an optimal 
value of the decay time constant 1/a for both ℛT (Fig. 2D, left) and 
​​C​ T​​​ (not shown). This reflects a trade-off between the noise and in-
tersymbol interference, mathematically evident from Eq. 7, where 
​​C​ T​​​ can be seen to go to zero when a is either very small or very large. 
Intuitively, for small decay time constants 1/a, intersymbol interfer-
ence becomes irrelevant, and the information capacity is limited by 
the effective SNR (1/a)/2, which, in turn, decreases with decreasing 
1/a. Similarly, for long decay times (increasing 1/a), intersymbol 

interference dominates and ruins the information capacity by let-
ting the summed activities of many previous transmissions pollute 
the component relevant to the current packet. Thus, the rate (and 
capacity) is expected to achieve a maximum for some intermediate, 
optimal value of the decay time constant. Numerically, we find that 
this optimal time constant scales near-linearly with the transmis-
sion window T (Fig. 2D, right).

The case of a single-node “network” is, in fact, characteristic of 
the broader class of so-called normal networks (i.e., networks whose 
adjacency matrices are normal), which include symmetric, skew-
symmetric, and translation-invariant graphs to name only a few 

A B

C

D

Fig. 2. Information transmission through a single node. (A) Single-node schematics. (B and C) Capacity ​​C​ T​​​ and rate ℛT as functions of the transmission window T, for 
various values of the decay rate a and fixed noise level 2 = 1 (B), and various values of 2 and fixed a = 1 (C). (D) ℛT as a function of the decay time constant 1/a exhibits 
a maximum (1/a*) for any finite value of T (left, 2 = 1); this maximum grows with T (right).
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examples. In the most favorable communication scenario (i.e., 
when B = C = I), any normal network composed of n nodes can be 
shown to behave like a set of n independent scalar information 
channels (note S5), each corresponding to a specific spatial “mode” 
of activity at the network level that decays at a specific rate between 
consecutive transmission events. For example, for a translation-
invariant architecture, these channels correspond to Fourier modes 
of varying spatial frequencies with decay rates that depend on the 
strength and spatial smoothness of the recurrent interactions (19, 29).

Our mathematical analysis of normal networks shows that, 
despite their appealing interpretation as sets of parallel communi-
cation subchannels, these networks might not be optimally suited 
for transmitting information. First, as expected from an ensemble 
of independent scalar subchannels whose rates ℛT each decrease 
with T (recall Fig. 2, B and C, right; further examples are given 
below), multidimensional normal networks with B = C = I, too, are 
best exploited in the limit of very small transmission windows (T → 0). 
As discussed previously, this limit is irrelevant in most applications 
(where T is finite), implying that normal networks would always be 
suboptimally exploited in practice. Second, we could show that the 
maximum achievable performance of a normal network does not 
depend on the fine details of its architecture (e.g., the detailed 
couplings between nodes) but only on the average decay rate of its 
nodes (the trace of A). For any choice of B and C, the information 
rate of a normal network can never exceed (note S5)

	​​ ℛ​ max​​ = ​   1 ─ ln2 ​ ​  tr(A) ─ 
2 ​σ​​ 2​ tr(A) − 1

 ​​	 (8)

In particular, the above limit is attained with equality when all 
nodes are transmitting and receiving packets of information, that is, 
when B = C = I. Critically, there are infinitely many network archi-
tectures that share the same tr(A) but have otherwise very different 
geometries. Thus, it would be somewhat unexpected if, among the 
very large set of all (i.e., normal and non-normal) networks with 
the same trace, the restricted subset of normal networks achieved the 
best performance. What is more, Eq. 8 also implies that the maxi-
mum rate of any normal network in the low-SNR regime is simply 
​​ℛ​ max​​ ≈ ​  1 _ 

2 ln 2 ​​​ 2​
​​, which no longer depends on the connectivity matrix 

A. In other words, no amount of clever structuring of a normal ar-
chitecture can ever rescue the drop in information rate incurred by 
a decrease in SNR. These considerations prompted us to study in-
formation transmission through more general, non-normal 
networks.

Role of non-normality in information transfer
A non-normal network is any network whose connectivity matrix A 
is not normal (i.e., A satisfies AA† ≠ A†A, where ·† denotes conju-
gate transposition) (20, 21). Thus, given the equivalence of normal 
networks with independent parallel channels discussed above, a 
non-normal network is one that cannot be so decomposed. This 
implies the existence of effective feedforward pathways, embedded 
either explicitly at the level of network nodes [i.e., an “anisotropic” 
tree-like structure that one would notice by looking at the connec-
tion graph; (30)] or implicitly at the level of orthogonal activity 
modes that simultaneously involve many nodes [“hidden” feedfor-
ward pathways; (31–33)]. Mathematically, explicit and implicit 
tree-like structures can both be identified via the Schur decomposi-
tion A = UU†. If A is normal, then this decomposition returns a 

diagonal matrix , with the Schur modes (columns of U) interpret-
ed as separate information channels with decay rates given by the 
diagonal of . For a non-normal matrix A, the Schur decomposition 
returns a triangular , the off-diagonal elements of which reveal 
hidden feedforward connections between the Schur modes.

While it is straightforward to classify a matrix as normal or 
non-normal, the extent or “degree” to which a matrix departs from 
normality and how such departure affects the dynamics of the net-
work and communication performance are more difficult to assess. 
Although several non-normality metrics of either “dynamical” or 
“algebraic” nature have been proposed in the literature (note S6), 
there does not exist a unique scalar parameter quantifying the 
amount of non-normality of general matrices. To address this, we 
begin with a class of linear graphs whose departure from normality 
is parameterized by two characteristics that we can choose inde-
pendently and arbitrarily: the length of the chains embedded in the 
graph and the directionality of these chains (Fig. 3A). More gener-
ally, structural indicators of network non-normality comprise (i) 
absence of cycles, (ii) low reciprocity of directed edges, and (iii) 
presence of hierarchical organization (22). However, when the 
network is stable, the strength and length of directional paths in the 
networks can be regarded as effective indicators of non-normality 
[cf. note S6 and (30)]. The connectivity matrix of the abovemen-
tioned networks reads

	​​ A  = ​

⎡

 ⎢ 

⎣

​​​ 



​ 

 / 

​ 

0

​ 

⋯

​ 

0

​  


​ 


​ 
 / 

​ 
⋱

​ 
⋮
​  0​  ​  ⋱​  ⋱​  0​  

⋮
​ 

⋱
​ 

⋱
​ 

⋱
​ 
 / 

​  

0

​ 

⋯

​ 

0

​ 



​ 



  ​​

⎤

 ⎥ 

⎦

​​  ∈ ​ ℝ​​ n×n​​​	 (9)

where ,  > 0, and  < − 2 to enforce stability. The simplicity of 
this architecture allows us to conveniently decouple the effects of (i) 
the eigenvalues of A and (ii) its departure from normality, on the 
network dynamics (see below). We show later that the insights 
obtained from this simple structured example topology, especially 
concerning the role of network non-normality, carry over to higher-
dimensional and heterogeneous networks. In particular, analogous 
considerations apply to the family of “layered” networks described 
in note S7. This class consists of networks with arbitrary “baseline 
topology” made increasingly non-normal through a process of 
“directed stratification.” In addition, for these networks, one can 
define parameters  and 𝓁 that represent the directionality strength 
between adjacent layers and depth of connected layers, respectively. 
As in the chain network (Eq. 9), these parameters regulate departure 
from normality.

Mathematically normal versions of this chain architecture are 
obtained either when there effectively is no chain (set of isolated 
nodes) or when there is no specific directionality in the connectivity 
( = 1, symmetric graph). In either case, the information rate decreases 
with increasing transmission window T (Fig. 3B, lowest curves), 
consistent with the formal theory developed above. To understand 
this behavior, and as a preliminary to our analysis of non-normal 
networks, we examine the optimal allocation of input power, or the 
spatial structure of the optimal input distribution. In Fig. 3C, we 
plot the optimal input covariance Σ⋆ (calculated as part of deriving 
the capacity; recall Eq. 5), expressed in the eigenbasis of the connec-
tivity matrix A, with eigenvectors sorted by decreasing values of 
their decay rate. For long transmission windows, more of the input 
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variance is funneled through slow-decaying modes than through 
fast-decaying ones (right, T ≥ 0.5). This allows more of the input 
signal to survive the natural decay of activity in the network, there-
by sustaining the SNR at the receiver. For shorter transmission win-
dows, this strategy no longer pays off: Much of what is signal for the 
current transmission is effectively “noise” for the next transmission 
epoch, and prolonging its decay adds further intersymbol interfer-
ence. Accordingly, the optimal allocation strategy for short T is the 
opposite of that for large T: Each subchannel is now allocated pow-
er proportional to its decay rate (note S5). Last, while achieving the 
information capacity requires careful selection of subchannels ac-
cording to their decay rates (as just discussed), concentrating the 
input power on too few channels comes at a cost, as communication 
no longer exploits all the network’s degrees of freedom. This is best 
illustrated in a set of n independent nodes with identical time con-
stants, for which the best strategy is provably to give each node an 
equal share P/n of the total available power (note S5). This amounts 
to maximizing the entropy of the input distribution. The covarianc-
es matrices of Fig. 3C represent the optimal way of resolving the 
above trade-offs for the chain architecture considered here.

We next show that large gains in information rate can be ob-
tained by making the network connectivity non-normal. The de-
gree of non-normality of the chain’s connectivity matrix (𝓁 = 8) can 
be increased, without altering its eigenvalues, by increasing a single 
parameter  reflecting the graph’s directionality (Fig. 3A). As the 
network is made increasingly non-normal in this way, its informa-
tion rate grows to eventually exceed the normal networks’ optimal 
rate by a large margin. Moreover, the optimal rate is now attained at 
some realistic, finite transmission window T (Fig. 3B, left).

To understand the mechanism through which non-normality 
improves information transmission, we repeat our inspection of 
optimal power allocation, now for a non-normal network with  = 
7. In Fig. 3D, we plot the optimal input covariances (no longer ex-
pressed in the eigenbasis of A, but in the standard basis of the net-
work’s nodes) for various transmission window lengths. For large 
transmission windows, including the one that leads to the largest 
rate ℛmax, input power concentrates on the “source” nodes (leftmost 
nodes in Fig. 3A). This optimal strategy exploits the network’s 
ability to amplify signals as they propagate down the chain toward 
the “sink” (the last node). Thus, the SNR at the receiver can display 
large transient increases, whereas its decay could at best be slowed 
down in normal networks. For short transmission windows, such a 
strategy no longer pays off, because of the same trade-offs as uncov-
ered above for normal networks. First, the signal transiently builds 
up into the next transmission epoch, where it no longer is signal 
but instead contributes noise. Second, unevenly distributing input 
power across the n network nodes by favoring the source nodes 
reduces the entropy of the input distribution, which fundamentally 
limits the information rate. Together, these drawbacks explain why 
the source nodes are not particularly favored over sink nodes when 
T is small (Fig. 3D, left), and why, in general, the input power does 
not concentrate entirely on the first node in the chain but is gener-
ally distributed among the first few.

To further substantiate that non-normality benefits the informa-
tion capacity, we manipulate the degree of non-normality of the 
chain network discussed above, this time not by increasing  but 
through a complementary modification. Specifically, we morph the 
non-normal chain discussed above back into a normal network, by 

B

C

D

A

Fig. 3. Information rate for chain network. (A) Chain network schematics, with parameter values  = −2.5,  = 1, 2 = 1, B = I, and C = I. (B) Plot of ℛT as a function of T 
for four different values of  (for 𝓁 = 8) and 𝓁 (for  = 7). (C) Matrix plot of ​​​ ̃  Σ​​​ 

⋆
​​, the optimal input covariance expressed in the eigenbasis of A, for various values of T, 𝓁 = 8, 

and  = 1 (normal case). The eigenmodes of A are ordered by increasing decay time constants. (D) Matrix plot of the optimal input covariance Σ⋆ for various values 
of T, 𝓁 = 8, and  = 7 (strongly non-normal case).
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chopping the original chain of length 𝓁 = 8 into sets of shorter 
chains (Fig. 3A, top to bottom). Shorter chains consistently yield 
smaller information capacity (Fig. 3B, right), confirming that 
network non-normality has a positive impact on information trans-
mission. We found a similar correlation for the more general class 
of layered topologies described in note S7. More precisely, for these 
networks, increasing the depth of connected layers has a provably 
beneficial effect on the communication performance.

How noise shapes the optimal architecture
The results presented so far show that non-normal architectures 
can, in principle, outperform normal networks as information 
transmission media. These results were obtained for fixed input 
SNR, and we now show that non-normality is all the more beneficial 
as the SNR is poor. To show this, we revisit the chain architecture of 
the previous section (Fig. 3A) and systematically vary 2, the amplitude 
of the noise at the receiver (Fig. 4).

In the low-noise regime, non-normality has little impact on in-
formation transmission, whether the network is made non-normal 
by increasing its directionality (Fig. 4A) or by increasing the length 
of its chains (Fig. 4B). For any A, when 2 is small, we have (cf. 
note S4)

	​​ ℛ​ T​​ ≈ − ​  1 ─ ln 2 ​ tr(A)​	 (10)

which shows that, in the low-noise regime, the rate depends on 
the spectrum of A only. For the chain network, Eq. 10 reduces to 
​​ℛ​ T​​ ≈ − ​ n _ ln 2​​, which is independent of  and 𝓁. For large enough 2, 
however, increasing  or 𝓁 has pronounced benefits on the maximum 
information rate ℛmax (Fig. 4, A and B). In contrast, modifications 
of the parameters of the normal network ( = 1) that affect the 
eigenvalues without causing any departure from normality have 
close to no impact on the information rate. Specifically, changing 
the decay rate  of the single nodes is only beneficial in the low-
noise regime (Fig. 4C), corroborating the conclusions drawn from 
Eq. 8 above. The same equation also predicts that changing the 

overall coupling strength  (while keeping the directionality  
constant) has no effect on ℛmax (not shown).

From our analysis of this simple architecture, we conclude that 
network non-normality can greatly enhance information transmission 
in the low-SNR regime. We were able to show that non-normality 
can (in theory) cancel the effect of noise altogether (note S7). 
Specifically, it holds

	​​  lim​ →∞​​ ​ℛ​ T​​ = − ​  1 ─ ln 2 ​ tr(A) = − ​ n ─ ln 2 ​​	 (11)

Equation 11 implies that, no matter how poor the SNR is, by 
increasing the degree of non-normality of the network via the direc-
tionality strength , we get arbitrarily close to the maximum infor-
mation rate achievable in the noiseless regime [by any network with 
identical value of tr(A); Fig. 4A, horizontal dashed red line].

Intriguingly, this result does not only hold for the simple line 
architecture described above, but also for a more complex class of 
“layered,” with the free parameter  summarizing departure from 
normality in terms of directionality strength between layers (note 
S7). In this family of models, as in the linear chain, the detrimental 
effect of output noise (however large) can be annihilated entirely by 
making the network sufficiently non-normal (by increasing ). In 
this limit of strong non-normality, the network effectively behaves 
as a one-dimensional channel with decay rate ∣tr(A)∣ and indeed 
achieves an information rate equal to that of any network with the 
same tr(A) in the absence of output noise (Eq. 10).

Last, we investigated how the noise level shapes the optimal 
architecture via an optimization approach. More precisely, we 
numerically computed the network architecture optimizing the 
maximum information rate ℛmax with 10 nodes, bounded network 
weights, and different values of the noise variance 2 (note S8). 
From our numerical analysis, it turns out that as 2 grows, optimal 
networks become increasingly similar to a purely (hidden or effec-
tive) feedforward chain of maximal length, with approximately all 
of the input power allocated to the first nodes of the chain. This 
further corroborates our claim that non-normality is crucial for 

A B C

Fig. 4. Maximum information rate versus noise level for chain network. (A) Plot of ℛmax = maxT≥0 ℛT versus the output noise variance for the network of Fig. 3A with 
B = C = I,  = − 2.5, 𝓁 = 8, and three different values of . (B) Plot of ℛmax versus the output noise variance for the network of Fig. 3A with B = C = I,  = −2.5,  = 5, and three 
different values of 𝓁. (C) Plot of ℛmax versus the output noise variance for the network of Fig. 3A with B = C = I,  = 1, 𝓁 = 8, and three different values of .
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enhancing the communication performance of a network in the 
high-noise regime.

Generalization to heterogeneous topologies
Although the formulae that we have derived regarding the informa-
tion capacity of linear networks hold for arbitrary topology, most of 
the results presented so far were based either on highly simplified, 
small, and structured architectures (Fig. 3A) or on networks that 
deviated from normality in a highly structured way (note S7). To 
assess the generality of our results, we now study larger and more 
heterogeneous networks whose departure from normality we can 
also control. Specifically, we generate random connectivity matrices 
A following (34) as

	​ A = (− I + S ) P​	 (12)

Here, P is a random positive definite matrix drawn from the in-
verse Wishart distribution (see Materials and Methods), and S is a 
random skew-symmetric matrix whose (upper triangular) elements 
are drawn independently from a normal distribution with zero 
mean and variance ​​​S​ 2​​. It is easily shown that any state matrix A 
drawn according to Eq. 12 implies stable network dynamics, despite 
the network graph showing apparent disorder with connections of 
arbitrary average magnitude (e.g., there is no limit to the norm of P 
and S). The degree of network non-normality is set by the parameter 
S: When S = 0, A is symmetric, hence normal; as S increases, A 
departs further from normality (cf. see Materials and Methods and 
note S6). We calculated the maximum rate of these networks for 
various degrees of non-normality and found a similar interplay 
between network non-normality, transmission window, and input 
SNR as in the simplified architecture of Figs. 3 and 4. Specifically, 
non-normality results in greater maximum rates realized by nonzero 
optimal transmission windows (Fig. 5A). Moreover, these benefits 
over normal networks only arise in the low-SNR regime (Fig. 5B). 
Last, enhanced transmission performance at low SNR relies on a 
low-dimensional allocation of input power (Fig. 5C).

The role of non-normality in information transmission is further 
illuminated by considering the limit of poor SNR (2 → ∞): For any 
transmission window length T > 0, the rate decays with growing 2 
as (cf. note S4)

	​​ ℛ​ T​​ ≈ ​  1 ─ 2 ln 2 T ​ ​ ∥​B​​ ⊤​OB∥ ─ 
​​​ 2​

  ​​	 (13)

where ​∥​B​​ ⊤​OB∥​ represents the maximum total energy that the 
network can autonomously generate over a time window T, for an 
appropriate encoding of the input packet u0.

While the momentary magnitude of activity in normal networks 
can only decay in time (leading to sublinear growth of ​∥​B​​ ⊤​OB∥​ 
with T, i.e., decreasing ℛT in Eq. 13), non-normal networks have 
the capacity to transiently amplify certain input codes before the 
eventual decay of signals implied by collective stability. This leads to 
superlinear growth of ​∥​B​​ ⊤​OB∥​ with T, which, in turn, results in 
transiently increasing ℛT peaking at some finite value of T (Eq. 13).

Last, in deriving Eq. 13, we could also prove that in the limit of 
large noise 2, the rate ℛT is realized by effectively one-dimensional 
inputs, whose distribution lies entirely along the most sensitive 
input direction (i.e., along the initial condition that evokes the largest 
energy in the window T; note S4). In other words, the best way for 
the network to counteract a large amount of noise is to map every 
input packet onto a single, maximally amplified input pattern, thus 
effectively giving up on most of its degrees of freedom. This corrob-
orates and strengthens the generality of our findings of Figs. 3D and 
5C regarding the effective dimensionality of the input distribution 
in the high-noise regime.

DISCUSSION
Here, we have proposed a novel framework to model information 
propagation through networks with arbitrary topology and nodes 
governed by linear dynamics. These dynamics imply a form of 
memory in single nodes, giving rise to interference between the ac-
tivity transient initiated by the presentation of a given input packet 
and the activity left over from previous transmissions. We have 
used the notion of Shannon’s mutual information to quantify com-
munication performance and study how the latter depends on the 
network architecture. Our analysis has shown that the qualitative 
effects of graph connectivity on communication are largely deter-
mined by a property that is often overlooked: the degree of non-normality 
of the network’s (weighted) adjacency matrix. In particular, we have 
shown that normal networks perform poorly in the presence of 
large readout noise at the receiver. In contrast, non-normal net-
works exhibit more favorable communication properties, including 
the ability to entirely cancel out the effect of readout noise provided 
that the input packets are appropriately encoded, and the adjacency 
matrix is sufficiently non-normal. Non-normal networks appear 

A B C

Fig. 5. Role of non-normality in high-dimensional, heterogeneous networks. (A) Information rate as function of the transmission window T for n = 20, 2 = 1, B = C = I, 
and A drawn according to Eq. 12. (B) Maximum information rate ℛmax = maxT≥0 ℛT as a function of the readout noise variance 2. (C) Effective dimensionality [quantified 
using the “participation ratio”; see (46) and Materials and Methods] of the input distribution that defines the optimal allocation of input power as a function of the output 
noise variance 2. In all panels, colors indicate the degree of non-normality (s) of the network. Light-colored regions denote 95% confidence interval (CI) around the 
mean, estimated from 50 independent realizations of the 20 × 20 random matrix A, drawn according to Eq. 12.
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ubiquitous, with strong non-normality having been found in food 
webs, transport, and biological, social, communication, and citation 
networks (22). In addition, we mention that, besides information 
transfer, non-normality turns out to be the key to explaining and 
understanding a variety of other equally important phenomena, for 
instance, the process of pattern formation in natural and biological 
systems (21, 35), the selective amplification of cortical activity pat-
terns in the brain (32), and the emergence of giant oscillations in 
noise-driven dynamical systems (36–38).

To further highlight the impact and potential practical relevance 
of our findings, we have used our framework to analyze the com-
munication performance of the neuronal network of the nematode 
Caenorhabditis elegans. We focused on the (weighted and directed) 
chemical synapse network described in (39, 40) and examined the 
linearized and stabilized network dynamics of the neuronal mem-
brane potentials (see Materials and Methods). The network, which 
is illustrated in Fig. 6A, comprises 279 neurons (divided into 88 sen-
sory neurons, 82 interneurons, and 107 motor neurons) recurrently 
coupled through 2194 inhibitory/excitatory synaptic connections. 
We first wondered whether the non-normality of this directed bio-
logical connectome had the beneficial impact on communication 
that we have documented here for artificial networks. We thus 
compared its information rate ℛT (as a function of the transmission 
window T) with that of a symmetrized version (implying normal 
A), as well as a randomized ensemble, wherein the direction of each 
existing coupling in the connectome is reversed with probability 
1/2. Both manipulations induce a substantial drop in ℛT from the 
real network (Fig. 6B), indicating that the C. elegans connectome is 
non-normal in a way that benefits information transmission as 
shown in this paper. We next wondered whether the network’s 
non-normal structure is likely to be exploited for communication 
by these organisms. We reasoned that communication would natu-
rally flow from sensory neurons to motor neurons and that the 
network should therefore display good communication (in our 
framework) if, and only if, the input matrix B were to select sensory 
neurons while the output matrix C were to read out motor neurons. 
We found that this is indeed the case (compare Fig. 6C, green and 

blue). Notably, also, the symmetrized version of the connectome is 
almost unable to communicate information from sensory to motor 
nodes (Fig. 6B, red). Although preliminary, these numerical findings 
could shed light on the actual functioning of the C. elegans neuronal 
circuit and behavioral responsiveness to external stimuli. More 
generally, we expect that our theoretical framework could be used 
to understand and explain the emergence of certain topological 
structures in biological networks and to identify their intrinsic 
communication pathways.

In the paper, we focused on weighted networks and regarded the 
weights (and, precisely, their directionality and magnitude) as the 
main factors influencing network non-normality. However, non-
normal architectures can also emerge in unweighted networks, e.g., 
in networks with heterogeneous outdegree/indegree distributions. 
It would therefore be interesting to investigate what the most 
relevant features affecting non-normality in unweighted networks 
are and to what extent these features affect communication perfor-
mance. Further, in our framework, noise is modeled as the com-
bined effect of readout noise and an internal, structured source of 
noise arising from intersymbol interference. Investigating how dif-
ferent noise models could affect our analysis and results represents 
a compelling direction of future research. Also, noise could play an 
active role in the information transfer process as the input source of 
the communication channel. This change of perspective could lead 
to an information-theoretic interpretation of the findings in (36–38), 
wherein non-normality has been linked with the emergence of 
amplified oscillations in noise-driven interconnected nonlinear 
systems.

As is well known in the theory of non-normal matrices and 
operators (20), strong departure from normality often implies 
heightened sensitivity to structural perturbations, for example, the 
random addition/deletion of nodes or edges in a graph. This sug-
gests a generic trade-off between communication performance and 
resilience, which would be interesting to study further. For exam-
ple, we note that in the low-noise regime, where normal networks 
can perform just as well as non-normal ones, constraints on robust-
ness would favor normal networks. A similar trade-off has been 

A B C

Fig. 6. Information rate of C. elegans network. (A) Schematic of the chemical synapse network of the C. elegans nematode. The connectivity data and soma position of 
the neurons are taken from (39, 40). (B) Plot of the information rate ℛT versus transmission time T in the full communication setting (matrices B = C = I for the chemical 
synapse network A of the C. elegans (green curve), its symmetrized version (A + A⊤)/2 (red curve), and a randomized version in which each pair of entries (Aij, Aji) has been 
swapped with probability 1/2 (blue curve). (C) Plot of the information rate ℛT versus transmission time T in a partial communication setting (matrices B ≠ I and C ≠ I). The 
green curve is the rate of the real network A, with B and C selecting the 88 sensory and 107 motor neurons, respectively. The red curve is the rate of the symmetrized 
network described by matrix (A + A⊤)/2, with matrices B and C as above. The blue curve is the rate of the real network described by matrix A, with matrices B and 
C randomly selecting 88 input nodes and 107 output nodes, respectively. The sets of input and output nodes are chosen to be nonoverlapping. In all plots, the networks 
have been stabilized, by shifting their spectrum by a scalar matrix I,  ∈ ℝ, so that the real part of the largest eigenvalue is −0.1, and the variance of the output noise is 
set to 2 = 1. In the randomized scenarios, the dash-dotted curves represent the mean over 100 realizations, and the light-blue regions denote 95% CI around the mean.
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identified recently in (41), where network resilience was shown to 
be generically at odds with network controllability.

Our work may also offer new perspectives on memory and infor-
mation storage. Information transmission and storage are very 
similar problems: Communication is transmission through space, 
while memory is transmission through time. These two problems 
admit very similar models, are often both approached using the 
tools of information theory (19, 42, 43), and may interact in the 
context of network in ways that would be interesting to investigate 
further. Preliminary intuitions suggest that they may benefit each 
other: In our communication model, for example, intersymbol in-
terference could be reduced if one could keep a memory of decoded 
past packets and subtract their individual contributions to the mo-
mentary network activity at any time. Conversely, communication 
may improve memory. An obvious example is the oral tradition in 
human communities, where transmission of information from gen-
eration to generation emerges as a way to overcome the finite mem-
ory span (and indeed, life span) of individuals.

MATERIALS AND METHODS
Gramian matrices and numerical computation 
of information capacity and rate
The observability Gramian over the interval [0, T] of the system in 
Eq. 1 is defined as

	​ O = ​∫0​ 
T
 ​​ ​e​​ ​A​​ ⊤​t​ ​C​​ ⊤​ ​Ce​​ At​ dt​	 (14)

and can be numerically evaluated via numerical integration of the 
matrix-valued differential equation

	​​ X ̇ ​(t ) = ​A​​ ⊤​ X(t ) + X(t ) A + ​C​​ ⊤​ C​	 (15)

subject to the initial condition X(0) = 0 (27). The infinite-horizon 
controllability Gramian of the dynamics in Eq. 1 discretized with 
sampling time T as

	​ W = ​ ∑ 
k=0

​ 
∞

 ​​ ​e​​ AkT​ BΣ ​B​​ ⊤​ ​e​​ ​A​​ ⊤​kT​​	 (16)

and can be computed as the solution of the discrete-time algebraic 
Lyapunov equation

	​ X − ​e​​ AT​ ​Xe​​ ​A​​ ⊤​T​ = BΣ ​B​​ ⊤​​	 (17)

In the numerical evaluation of the capacity and rate, the Gramians 
14 and 16 have been computed via Eqs. 15 and 17, respectively. For 
vector-valued inputs (m ≥ 2), the solution of the optimization 
problem in Eqs. 5 and 6 has been numerically carried out in Python 
using optimization routines from the Pymanopt library (44), to-
gether with automatic differentiation techniques provided by Auto-
grad (45). If B = C = I and A is normal, then the solution is unique 
and admits a closed-form expression in terms of eigenvalues of A 
(note S5). More generally, if ​​CC​​ ⊤​≽C ​e​​ ​A​​ ⊤​T​ ​C​​ ⊤​ C​e​​ AT​​, then the optimi-
zation in Eqs. 5 and 6 is convex (note S3), and so convergence to the 
maximum is always guaranteed using trust-region or steepest-
descent methods. Otherwise, the problem turns out to be, in general, 

nonconvex, and to avoid local maxima, we ran the latter routines 
several times (102 to 103), starting from different random initializa-
tions, and selected the largest outcome.

Generation of random non-normal matrices 
and participation ratio
In Eq. 12, the skew-symmetric matrix S ∈ ℝn×n has been generated 
as S = L − L⊤, with ​​L​ ij​​ ∼ N(0, ​​S​ 2 ​)​ for i < j, and Lij = 0 otherwise. The 
positive definite matrix P ∈ ℝn×n has been drawn from the inverse 
Wishart distribution with scale matrix −2I and  degrees of freedom. 
We chose −2 =  − n − 1,  = 24 + n, to guarantee sufficient hetero-
geneity in the eigenvalues of P (34). With this choice, it can be 
shown that ​​​S​ 2​​ correlates well with standard measures of matrix 
non-normality (note S6). Following (46), given a positive definite 
matrix A ∈ ℝn×n with eigenvalues ​​{​​ i​​}​i=1​ n  ​​, we define the participation 
ratio

	​​ n​ eff​​ = ​ 
​(​∑ i=1​ n  ​​ ​​ i​​)​​ 2​

 ─ 
​∑ i=1​ n  ​​ ​​i​ 

2​
  ​​	 (18)

When applied to the covariance matrix, the participation ratio 
provides a measure of the effective dimensionality of the underlying 
random vector.

C. elegans dataset and network dynamics
The C. elegans connectivity data of (39, 40) comprise two datasets: 
the gap junction and chemical synapse wiring diagrams. Since the 
gap junction dataset does not include link directionality, in our 
study, we focus on the chemical synapse network, which has clear 
directionality extracted from electron micrographs. This network 
consists of 279 neurons. These neurons are categorized in 88 sensory 
neurons (neurons known to respond to specific environmental 
conditions), 107 motor neurons (neurons characterized by the pres-
ence of neuromuscular junctions), and 82 interneurons (the re-
mainder). The network comprises 2194 synaptic connections. As in 
(39), we make the common assumption that GABAergic neurons 
(26 neurons) make inhibitory synapses, whereas the rest of the 
neurons form excitatory synapses. We describe the autonomous 
dynamics of the chemical synapse network by the following linear 
system

	​ ​x ̇ ​(t ) = (A − I ) x(t)​	 (19)

where x is the vector containing the membrane potentials of all 
neurons around an equilibrium, A is the adjacency matrix of the 
chemical synapse network,  = C/g, and  = gm/g. Here, the parameters 
C, g, and gm represent the (average) neuronal membrane capacitance, 
synaptic conductance, and membrane conductance, respectively 
[see (39, 47) for further details]. In our numerical study, we set  = 0.5 
and tune  to stabilize the network dynamics (Eq. 19). Specifically, 
we set the largest real part of the eigenvalues to −0.1. This yields 
 ≈ 20, a value within the physiological range of gm and g (48). 
However, profiles of ℛT qualitatively similar to those in Fig. 6 
(A and B) have been obtained for a wide range of values of parame-
ters  < 0,  > 0, and noise variance 2.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/22/eaba2282/DC1
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