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Abstract

The persistent and graded activity often observed in cortical circuits is some-
times seen as a signature of autoassociative retrieval of memories stored earlier
in synaptic efficacies. However, despite decades of theoretical work on the sub-
ject, the mechanisms that support the storage and retrieval of memories remain
unclear. Previous proposals concerning the dynamics of memory networks have
fallen short of incorporating some key physiological constraints in a unified way.
Specifically, some models violate Dale’s law (i.e. allow neurons to be both excita-
tory and inhibitory), while some others restrict the representation of memories to
a binary format, or induce recall states in which some neurons fire at rates close
to saturation. We propose a novel control-theoretic framework to build function-
ing attractor networks that satisfy a set of relevant physiological constraints. We
directly optimize networks of excitatory and inhibitory neurons to force sets of
arbitrary analog patterns to become stable fixed points of the dynamics. The re-
sulting networks operate in the balanced regime, are robust to corruptions of the
memory cue as well as to ongoing noise, and incidentally explain the reduction
of trial-to-trial variability following stimulus onset that is ubiquitously observed
in sensory and motor cortices. Our results constitute a step forward in our under-
standing of the neural substrate of memory.

1 Introduction

Memories are thought to be encoded in the joint, persistent activity of groups of neurons. According
to this view, memories are embedded via long-lasting modifications of the synaptic connections
between neurons (storage) such that partial or noisy initialization of the network activity drives
the collective dynamics of the neurons into the corresponding memory state (recall) [1]. Models of
memory circuits following these principles abound in the theoretical neuroscience literature, but few
respect some of the most fundamental properties of brain networks, including: i) the separation of
neurons into distinct classes of excitatory (E) and inhibitory (I) cells – known as Dale’s law –, ii) the
presence of recurrent and sparse synaptic connections, iii) the possibility for each neuron to sustain
graded levels of activity in different memories, iv) the firing of action potentials at reasonably low
rates, and v) a dynamic balance of E and I inputs.

In the original Hopfield network [1], connectivity must be symmetrical, which violates Dale’s law.
Moreover, just as in much of the work following it up, memories are encoded in binary neuronal
responses and so converge towards effectively binary recall states even if the recall dynamics for-
mally uses graded activities [2]. Subsequent work considered non-binary pattern distributions [3, 4],
and derived high theoretical capacity limits for them, but those capacities proved difficult – if not
impossible – to realise in practice [5, 6], and the network dynamics therein did not explicitly model
inhibitory neurons thus implicitly assuming instantaneous inhibitory feedback. More recent work
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Figure 1: (a) Examples of analog patterns of excitatory neuronal activities, drawn from a log-normal
distribution. In all our training experiments, network parameters were optimized to stabilize a set
of such analog patterns and the baseline, uniform activity state (top row). For ease of visualization,
only 30 of the 100 excitatory neurons are shown. (b) Optimized values of the inhibitory (auxiliary)
neuronal firing rates for 5 of 30 learned memories (corresponding to those in panel a). Only 30 of
the 50 auxiliary neurons are shown. (c) Empirical distributions of firing rates across neurons and
memory patterns, for each population.

incorporated Dale’s law, and described neurons using the more realistic, leaky integrate-and-fire
(LIF) neuron model [7]. However, the stability of the recall states still relied critically on the satu-
rating behavior of the LIF input-output transfer function at high rates. Although it was later shown
that dynamic feedback inhibition can stabilize relatively low firing rates in subpopulations of more
tightly connected neurons [8, 9], inhibitory feedback in these models is global, and calibrated for a
single stereotypical level of excitation for all memories, implying effectively binary memories again.
Finally, spatially connected networks are able to sustain graded activity patterns (spatial “bumps”),
but make strong assumptions about the spatial structure of both the connectivity and the memory
patterns, and are sensitive to ongoing noise (e.g. [10, 11]). Ref. [12] provides a rare example of
spike timing-based graded memory network, but it again did not contain inhibitory units.

Here we propose a general control-theoretic framework that overcomes all of the above limitations
with minimal additional assumptions. We formalize memory storage as implying two conditions:
that the desired activity states be fixed points of the dynamics, and that the dynamics be stable
around those fixed points. We directly optimize the network parameters, including the synaptic
connectivity, to satisfy both conditions for a collection of arbitrary, graded memory patterns (Fig. 1).
The fixed point condition is achieved by minimizing the time derivative of the neural activity, such
that ideally it reaches zero, at each of the desired attractor states. Stability, however, is more difficult
to achieve because the fixed-point constraints tend to create strong positive feedback loops in the
recurrent circuitry, and direct measures of dynamical stability (eg. the spectral abscissa) do not admit
efficient, gradient-based optimization. Thus, we use recently developed methods from robust control
theory, namely the minimization of the Smoothed Spectral Abscissa (SSA, [13, 14]) to perform
robust stability optimization. To satisfy biological constraints, we parametrize the networks that we
optimize such that they have realistic firing rate dynamics and their connectivities obey Dale’s law.
We show that despite these constraints the resulting networks perform memory recall that is robust
to noise in both the recall cue and the ongoing dynamics, and is stabilized through a tight dynamic
balance of excitation and inhibition. This novel way of constructing structurally realistic memory
networks should open new routes to the understanding of memory and its neural substrate.

2 Methods

We study a network of n = nE (excitatory) +nI (inhibitory) neurons. The activity of neuron i is
represented by a single scalar potential vi, which is converted into a firing rate ri via a threshold-
quadratic gain function (e.g. [15]):

ri = g(vi) :=

{

γv2i if vi > 0

0 otherwise
(1)
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We set γ to 0.04, such that g(vi) spans a few tens of Hz when vi spans a few tens of mV, as
experimentally observed in cortical areas (e.g. cat’s V1 [16]). The instantaneous state of the system
can be expressed as a vector v(t) := (v1(t), . . . , vn(t)). We denote the activity of the excitatory or
inhibitory subpopulation by vexc and vinh, respectively. The recurrent interactions between neurons
are governed by a synaptic weight matrix W, in which the sign of each element Wij depends on
the nature (excitatory or inhibitory) of the presynaptic neuron j. We enforce Dale’s law via a re-
parameterization of the synaptic weights:

Wij = sj log(1 + expβij) with sj =

{

+1 if j ≤ nE
−1 otherwise

(2)

where the βij’s are free, unconstrained parameters. (We do not allow for autapses, i.e. we fix Wii =
0). The network dynamics are thus given by:

τi
dvi
dt

= −vi +

n
∑

j=1

Wij g(vj) + hi , (3)

where τi is the membrane time constant, and hi is a constant external input, independent of the
memory we wish to recall.

It is worth noting that, since the gain function g(vi) defined in Eq (1) has no upper saturation,
recurrent interactions can easily result in runaway excitation and firing rates growing unbounded.
However, our optimization algorithm will naturally seek stable solutions, in which firing rates are
kept within a limited range due to a fine dynamic balance of excitation and inhibition [14].

Optimizing network parameters to embed attractor memories

We are going to build and study networks that have a desired set of analog activity patterns as stable
fixed points of their dynamics. Let {vµ

exc}µ=1,...,m be a set of m target analog patterns (Fig. 1),
defined in the space of excitatory neuronal activity (potentials). For a given pattern µ, the inhibitory
neurons will be free to adjust their steady state firing rates v

µ

inh
to whatever pattern proves to be

optimal to maintain stability. In other words, we think of the activity of inhibitory neurons as
“auxiliary” variables.

A given activity pattern v
µ ≡ (vµ⊤

exc,v
µ⊤

inh
)⊤ is a stable fixed point of the network dynamics if, and

only if, it satisfies the following two conditions:

dv

dt

∣

∣

∣

∣

v=v
µ

= 0 and α (Jµ) < 0 (4)

where Jµ is the Jacobian matrix of the dynamics in Eq. 3, i.e. Jµ
ij
:=Wij g

′(vµj )− δij (Kronecker’s

delta), and α(Jµ) denotes the spectral abscissa (SA), defined as the largest real part in the eigenvalue
spectrum of J

µ. The first condition makes v
µ a fixed point of the dynamics, while the second

condition makes that fixed point asymptotically stable with respect to small local perturbations.
Note that the width of the basin of attraction is not captured by the SA.

The two conditions in Eq. 4 depend on a set of network parameters that we will allow ourselves
to optimize. These are all the synaptic weight parameters (βij , i 6= j), as well as the values of the
inhibitory neurons’ firing rates in each attractor (v

µ

inh
, µ = 1, . . . ,m). Thus, we may adjust a total

of n(n− 1) + nIm parameters.

Using Eq. 3, the first condition in Eq. 4 can be rewritten as vµi −
∑n

j=1
Wijg(v

µ
j ) − hi = 0.

Despite this equation being linear in the synaptic weights, the re-parameterization of Eq. 2 makes
it nonlinear in β, and it is in any case nonlinear in v

µ

inh
. We will therefore seek to satisfy this

condition by minimizing ‖ dv/dt|
v=v

µ ‖2, which quantifies how fast the potentials drift away when
initialized in the desired attractor state vµ. When it is zero, vµ is a fixed point of the dynamics. Our
optimization procedure (see below) may not be able to set this term to exactly zero, especially as we
try to store a large number of memories, but in practice we find it becomes small enough that the
Jacobian-based stability criterion remains valid.

Meeting the stability condition (second condition in Eq. 4) turns out to be more involved. The SA
is, in general, a non-smooth function of the matrix elements and is therefore difficult to minimize.
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A more suitable stability measure has been introduced recently in the context of robust control
theory [13, 14], called the Smoothed Spectral Abscissa (SSA), which we will use here and denote
by α̃ε(J

µ). The SSA, defined for some smoothness parameter ε > 0, is a differentiable relaxation of
the SA, with the properties α(Jµ) < α̃ε(J

µ) and limε→0 α̃ε(J
µ) = α(Jµ). Therefore, the criterion

α̃ε(J
µ) ≤ 0 implies α(Jµ) < 0, and can therefore be used as an indication of local stability.

Both the SSA and its gradient are straightforward to evaluate numerically, making it amenable to
minimization through gradient descent. Note that the SSA depends on the Jacobian matrix elements
{Jµ

ij}, which in turn depend both on the connectivity parameters {βij} and on v
µ

inh
. Note also that

the parameter ε > 0 controls how tightly the SSA hugs the SA. Small values make it a tight upper
bound, with increasingly ill-behaved gradients. Large values imply more smoothness, but may no
longer guarantee that the SSA has a negative minimum even though the SA might have one. In our
system of n = 150 neurons we found ε = 0.01 to yield a good compromise. In the general case the
distance between SA and SSA grows linearly with the number of dimensions.To keep it invariant, ε
should be scaled accordingly. We therefore used the following heuristic rule ε = 0.01 · 150/n.

We summarize the above objective into a global cost function by lumping together the fixed point
and stability conditions, summing over the entire set of m target memory patterns, and adding an L2

penalty term on the synaptic weights to regularize:

ψ ({βij}, {v
µ

inh
}) :=

1

m

m
∑

µ=1

(

1

n

∥

∥

∥

∥

dv

dt

∥

∥

∥

∥

2

v=v
µ

+ ηsα̃ε (J
µ)

)

+
ηF
n2

‖W‖
2

F
. (5)

where ‖W‖2F is the squared Frobenius norm of W, i.e. the sum of its squared elements, and the
parameters ηs and ηF control the relative importance of each component of the objective function.
We set them heuristically (Table 1). We used a variant of the low-storage BFGS algorithm included
in the open source library NLopt [17] to minimize ψ.

Choice of initial parameters and attractors

The synaptic weights are initially drawn randomly from a Gamma distribution with a shape factor of
2 and a mean that depends only on the type of pre- and post-synaptic population. The mean synaptic
weights of the four synapse types were computed using a mean-field reduction of the full network
to meet the condition that the network initially exhibits a stable baseline state v

µ=1
exc in which all

excitatory firing rates equal rbaseline = 5 Hz (Table 1, and Supplementary Material). This base-
line state was included in every set of m target attractors that we used and was thus stable from
the beginning, by construction. For the remaining target patterns, {vµ

exc}µ=2,...,m were generated

by inverting (using g−1) firing rates that were sampled from a log-normal distribution with a mean
matching the baseline firing rate, rbaseline (Fig. 1a) and a variance of 5 Hz. This log-normal distri-
bution was chosen to roughly capture the skewed and heavy-tailed nature of firing rate distributions
observed in vivo (see e.g. for a review [18]). The inhibitory potentials in the memory states, {vµ

inh
},

were initialized to the baseline, g−1(5Hz), and were subsequently used as free parameters by the
learning algorithm (cf. above; see also Fig. 1b).

3 Results

Example of successful storage

Figure 2 shows an example of stability optimization: in this specific run we used 150 neurons to em-
bed 30 graded attractors (examples of which where shown in Fig. 1), yielding a storage capacity of
0.2. Other parameters are listed in Table 1. Gradient descent gradually reduces each of the attractor-
specific sub-objectives in Eq. 5, namely the SSA, the SA, and the potential velocities ‖dv/dt‖2 in
each target state (Fig. 2). After convergence, the SSA has become negative for all desired states,
indicating stability. Note, however, that ‖dv/dt‖ after convergence is small but non-zero in each
of the target memories. Thus, strictly speaking, the target patterns haven’t become fixed points of
the dynamics, but only slow points from which the system will eventually drift away. In practice
though, we found that stability was robust enough that an exact, stable fixed point had in fact been
created very near each target pattern. This is detailed below.
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Figure 2: (a) Decrease of the SA (solid line) and of the SSA (dotted line) during learning in systems
with 30 (purple) and 50 attractors (orange). Thick lines show averages across attractors, flanking
lines show the corresponding standard deviations. The x-axis marks the actual duration of the run of
the learning algorithm. (b) Euclidean norm of the velocity at the fixed point during learning. Lines
and colors as in a. Note the logarithmic y-axis.

Table 1: Parameter settings

nE 100 τE 20 ms ηs 0.02
nI 50 τI 10 ms ηF 0.001
m 30 rbaseline 5 Hz

Memory recall performance and robustness

For recall, we initialize neuronal activities at a noisy version of one of the target patterns, and study
the subsequent evolution of the network state. The network performs well if its dynamics clean up
the noise and home in on the target pattern (autoassociative behavior) and if it achieves this robustly
even in the face of large amounts of noise.

Initial cues are chosen to be linear combinations of the form r(t = 0) = σ r̃+(1−σ) rµ, where rµ

is the memory we intend to recall and r̃ is an independent random vector with the same lognormal
statistics used to generate the memory patterns themselves. The parameter σ regulates the noise
level: σ = 0 sets the network activity directly in the desired attractor, while σ = 1 initializes it with
completely random values.

The deviation of the momentary network state r(t) ≡ g(v(t)) from the target pattern r
µ ≡ g(vµ)

is measured in terms of the squared Euclidean distance, further normalized by the expected squared
distance between r

µ and a random pattern drawn from the same distribution (log-normal in our
case). Formally:

dµ(t) :=
‖rexc(t)− r

µ
exc‖

2

〈‖r̃exc − r
µ
exc‖2〉

r̃

. (6)

Figure 3a shows the temporal evolution of dµ(t) on a few sample recall trials, for two different noise
levels σ. For σ = 0.5, recalls are always successful, as the network state converges to the right target
pattern on each trial. For σ = 0.75, the network activity occasionally settles in another, well distinct
attractor.

We used the convention that a trial is deemed successful if the distance dµ(t) falls below 0.001. (A
∼ 3 Hz deviation from the target in only one of the 100 exc. neurons, with all other 99 neurons
behaving perfectly, would be sufficient to cross this threshold and fail the test.) We further measure
performance as the probability of successful recall, which we estimated from many independent
trials with different realizations of the noise r̃ in the initial condition (Figure 3b). The network
performance is also compared to an “ideal observer” [6] that has direct access to all the stored
memories (rather than just their reflection in the synaptic weights) and simply returns that pattern
in the training set {rµ} to which the initial cue is closest (Fig. 3b). Thus, as an upper bound on
performance, the ideal observer only produces a wrong recall when the added noise brings the
initial state closer to an attractor that is different from the target. Remarkably, our network dynamics

5



0 0.1 0.2
0

0.5

1

1.5

2

t (s)

d
µ
(t
)

σ = 0.50
σ = 0.75

a

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1b

dµ(t0)

p
ro

b
a

b
ili

ty
o

f
s
u

c
c
e

s
s network

ideal

memories

baseline

Figure 3: (a) Example recall trials for a single memory r
µ, which is presented to the network at

time t = 0 in a corrupted version that is different on every trial, for two different values of the
noise level σ (colors). Shown here is the temporal evolution of the momentary distance between the
vector of excitatory firing rates rexc(t) and the memory pattern r

µ
exc. Different lines correspond to

different trials. (b) Fraction of trials that converged onto the correct attractor (final distance dµ(t =
∞) < 0.001, cf. text) as a function of the normalized distance between the initial condition and the
desired attractor, dµ(t = 0). Thick lines show medians across attractors, flanking thin lines show

the 25th and 75th percentiles. The performance of the baseline state is shown separately (orange).
The dashed lines show the performance of an “ideal observer”, always selecting the memory closest
to the initial condition, for the same trials.

(continuous lines) and the ideal observer (dashed lines) have comparable performances. When trying
to recall the uniform pattern of baseline activity, the performance appears much better (orange line)
both for the ideal observer and the network. This is simply because the random vectors used to
perturb the system have a high probability of lying closer to the mean of the log normal distribution
(that is, the baseline state) than to any other memory pattern. Moreover, the network was initialized
prior to learning with the baseline as the single global attractor, and this might account for the
additional tendency of the network (solid orange line) to fall on such state, as compared to the ideal
observer (dotted orange line).

Only a few strong synaptic weights contribute to memory recall

Synaptic weights after learning (Fig. 4a) are sparse: their distribution shows the characteristic peak
near zero and the long tail observed in real cortical circuits [19, 20] (Fig. 4b). This sparseness cannot
be accounted for by the L2 norm regularizer in the cost function (Eq. 5) as it does not promote
sparsity as an L1 term would. Thus, the observed sparsity in the trained network must be a genuine
consequence of having optimized the connectivity for robust stability.

If we assume that weights |Wij | ≤ 0.01 correspond to functionally silent synapses, then the trained
network contains 52% of silent excitatory synapses and 46% of silent inhibitory ones (Fig. 4c). We
wondered if those weak, “silent” synapses are necessary for stability of memory recall, or could be
removed altogether without affecting performance. To test that, we clipped those synapses {|Wij | <
0.01} to zero, and computed recall performance again (Fig. 4d). This clipping turns out to slightly
shift the position of the attractors in state space, so we increased the distance threshold that defines
a successful recall trial to 0.08. The test reveals that one of the attractors loses stability, reducing
the average performance. However the remaining 29 attractors are robust to this removal of weak
synapses and show near-equal recall performance as above. This demonstrates that small weights,
though numerous, are not necessary for competent recall performance.

Balanced state

As a result of the connection weight distributions and robust stability, the trained network produces
a regime in which excitation and inhibition balance each other, precisely tuning each neuron to
its target frequency in each attractor. Excitatory and inhibitory inputs are defined as hexci (t) =
∑n

j=1
⌊Wij⌋+ rj(t) and hinhi (t) =

∑n

j=1
⌊−Wij⌋+ rj(t) so that the difference hexci (t) − hinhi (t)

corresponds to the total recurrent input, i.e. the second term on the r.h.s. of Eq. 3.
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Figure 5: (a) Dynamics of the excitatory and inhibitory inputs during a memory recall trial, for
three sample neurons. (b) Scatter plot of steady-state excitatory versus inhibitory inputs. Each dot
corresponds to a different memory pattern, and several neurons are shown in different colors. (c)
Histogram of E and I input correlations across all memories for each neuron (for example, one value
binned in this histogram would be the correlation between all green dots in b).

Figure 5a shows the evolution of hexci (t) and hinhi (t) during a recall trial for one of the stored random
attractors, for 3 different neurons. Neuron 3 has rate target of 9Hz, well above average, therefore its
excitation is much higher than inhibition. Neuron 72 has a steady state firing rate of 2 Hz, below
average: its inhibitory input is greater than the excitatory one, and firing is driven by the external
current. Finally, neuron 101 is inhibitory and has a target rate 0, and indeed its inhibitory input
is large enough to overwhelm the combined effects of the external and recurrent excitatory inputs.
Notably, in all these cases, both E and I input currents are fairly large but cancel each other to leave
something smaller, either positive or negative.

Figure 5b shows the E vs. I inputs at steady-state across all the embedded attractors, for various
neurons plotted in different colors. These E and I inputs tend to be correlated across attractors for
every single neuron (dots in Fig. 5 tend to hug the identity line), with relative differences fine-tuned
to yield the desired firing rates. These across-attractors E/I correlations are summarized in Fig. 5c
as a histogram over neurons.

Robustness to ongoing noise and reduction of across-trial variability following recall onset

Finally, to probe the system under more realistic dynamics, we added time-varying, Gaussian white
noise such that, in an excitatory neuron free from network interactions, the potential would fluctuate
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with standard deviation 0.33. Figure 6a shows the momentary distance dµ(t) of the network state
from the attractor closest to the initial cue (green), and for all other attractors (orange), during a
recall trial. It is clear that the system revolves around the desired attractor, performing successful
recall despite the ongoing noise. In a second experiment, we ran many trials in which the initial-
ization at time t = 0 was random, while the same spatially patterned stimulation – aligned onto a
chosen attractor – is given to the network in each trial at time t = 0.5 sec. Figure 6b shows the stan-
dard deviation of the internal state of a neuron across trials, averaged across the neural population.
Following stimulus onset, neurons are always pushed towards the target attractor, and this greatly
reduces trial-by-trial variability, compared to the initial spontaneous regime in which the neurons
would fluctuate around any of the activity levels corresponding to its assigned attractors. Interest-
ingly, such stimulus-induced variability reduction has been observed very broadly across sensory
and motor cortical areas [21]. This extends previous work, e.g. [22] and [23], showing variability
reduction in a multiple-attractor scenario with effectively binary patterns, to the case of patterns with
graded activities.

4 Discussion

We have provided a proof of concept that a model cortical networks of E and I neurons can embed
multiple analog memories as stable fixed-points of their dynamics. Memories are stable in the face
of ongoing noise and corruption of the recall cues. Neuronal activities do not saturate, and indeed,
our single-neuron model did not explicitly incorporate an upper saturation mechanism: dynamic
feedback inhibition, precisely matched to the level of excitation incurred by each attractor, ensures
that each neuron can fire at a relatively low rate during recall. As a result, excitation and inhibition
are tightly balanced.

We have used a rate-based formulation of the circuit dynamics, which raises the question of the
applicability of our method to understanding spiking memory networks. Once the connectivity
in the rate model is generated and optimized, it could still be used in a spiking model, provided
the gain function we have used here matches that of the single spiking neurons. In this respect,
the gain function we have used here is likely an appropriate choice: in physiological conditions,
cortical neurons have input-output gain functions that are well approximated by a rectified power-
law function over their entire dynamic range [24, 25, 26].

An important question for future research is how local synaptic learning rules can achieve the stabi-
lization objective that we have approached here from an optimal, algorithmic viewpoint. Inhibitory
synaptic plasticity is a promising candidate, as it has already been shown to enable self-regulation of
the spontaneous, baseline activity regime, and also to promote the stable storage of binary memory
patterns [27]. More work is required in this direction.
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1 Weight initialization

The initial weights prior to learning are set randomly, but with the requirement that the baseline rate
is already a stable attractor of the system. To achieve this, we first consider the system in terms
of average population activities, i.e. reducing it to 2 dimensions, one representing excitatory (E)
neurons and the other representing inhibitory (I) ones.

(

τE 0

0 τI

)

d

dt

(

vE

vI

)

= −

(

vE

vI

)

+

(

W 2D
EE −W 2D

EI

W 2D
IE −W 2D

II

)(

g(vE)

g(vI)

)

+

(

h

h

)

(S1)

We fix the time constants to τE = 20 ms and τI = 10 ms, leaving a total of five free parameters (all
positive). The stationary points of the network solve the equation:

(

ṽE

ṽI

)

=

(

W 2D
EE −W 2D

EI

W 2D
IE −W 2D

II

)(

g(ṽE)

g(ṽI)

)

+

(

h

h

)

(S2)

In addition, we have to ensure that this activity level is stable. The necessary and sufficient condition
for this is that the Jacobian calculated in the fixed point has negative eigenvalues. The Jacobian
matrix of the reduced model is:

J|v=ṽ =

(

τE 0
0 τI

)

−1 [

−I+W2D

(

g′(ṽE) 0
0 g′(ṽI)

)]

(S3)

The conditions for having only negative eigenvalues in a 2-dimensional J are:

Tr(J|v=ṽ) < 0 and Det(J|v=ṽ) > 0 . (S4)

We picked values for our 6 free parameters in order to satisfy Eq. S2 and Eq. S4 within some margin
for reasonably low values of ṽE and ṽI (many combinations of values would work and promote
successful learning in the full-size system). The specific parameters used for the simulations are:

W2D =

(

2.5 −1.3
2.4 −1

)

h = 7 g(ṽ) =

(

rE,baseline

rI,baseline

)

≈

(

5
6.5

)

(S5)

To build the full-scale N-dimensional weight matrix, we sampled random values from an i.i.d.
gamma distribution with a shape parameter of 2 and a mean that depended on the neural pop-
ulations involved. If neuron i belongs to population α and neuron j belongs to population β
(where α, β ∈ {E , I}) the distribution mean is 〈Wij〉 = Wαβ/nβ . To avoid fluctuations in the
mean incoming weight on a single-cell basis, we further enforced the following normalization:

Wij ← Wij
W 2D

αβ∑
j∈{β} Wij

, ∀i ∈ {α}. Finally, the constant inputs hi in the large system were

all set to h.

Building the network in this way ensures that a baseline state of uniform, low firing rates across the
network is initially stable.
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2 Recap: system dynamics and the Jacobian

The dynamics of the system is expressed by Eq. 3 of the main text, repeated here for convenience:

d vi
dt

=
1

τi



−vi +

n
∑

j=1

Wij g(vj) + hi



 (3)

To constrain the signs of the synaptic weight and thus enforce Dale’s law, we reparameterized the
weights as

Wij = (1− δij) sj log(1 + expβij) with sj =

{

+1 if j ≤ nE

−1 if otherwise
(2)

where the (1− δij) term prevents the existence of autapses. The single-neuron I/O gain function is
threshold-quadratic:

g(vi) = γ ⌊vi⌋
2
+ , with ⌊x⌋+ =

{

x if x > 0

0 otherwise
(1)

The (i, j)th element of the Jacobian matrix J is:

Jij :=
∂

∂vj

{

dv

dt

}

i

=
1

τi
(−δij +Wij g

′(vj)) (S6)

3 Computation of the smoothed spectral abscissa (SSA) and its gradient

In this section we summarize the procedure employed to compute the SSA of the Jacobian, and its
gradient with respect to each matrix element. For a more thorough description, see the original paper
introducing the SSA [1]; for a more specific application to neuroscience and interpretation in terms
of network dynamics, see [2].

Given a square matrix J, our goal is to compute its SSA, denoted by α̃ε(J). For this purpose, a
function f : (Rn×n,R)→ R is defined as follows:

f(J, s) = Tr(Ps) (S7)

where Ps satisfies the following Lyapunov equation:

(J− sI)Ps +Ps(J− sI)
T = −I (S8)

In Matlab, such equations can be solved using the lyap function, which uses the standard Bartels-
Stewart algorithm [3]. It is also convenient to define a second matrix Qs as the solution to the
Lyapunov equation dual to the previous one:

(J− sI)TQs +Qs(J− sI) = −I (S9)

The SSA, also denoted by α̃ε(J), corresponds to the scalar s that solves f(J, s) = 1/ε for some
ε > 0. There are no closed-form solutions, but the smoothness of f(J, s) makes it possible to use
standard root-finding methods, requiring the gradient w.r.t. s:

∂f(J, s)

∂s
= −2 Tr(QsPs) (S10)

Here, we used the standard Newton method to find the root of g(s) = f(J, s) − 1/ε, yielding the
SSA. Finally, once the value of α̃ε(J) is known, its gradient w.r.t. J can be computed as follows:

∂α̃ε(J)

∂J
=

Qα̃ε
Pα̃ε

Tr(Qα̃ε
Pα̃ε

)
(S11)

Complexity The main computational bottleneck in computing the SSA and its gradient is solv-
ing the Lypunov equations, which is O(n3). It is worth noting that substantial acceleration can be
achieved by computing the Schur decomposition of J before starting iterating through the Newton al-
gorithm. Indeed, the Schur decomposition is the most expensive (O(n3)) part of the Bartels-Stewart
algorithm, and once it is computed, solving the Lyapunov equation takes only O(n2) operations.
Moreover, the upper-triangular Schur factor is common to all shifted versions J − sI, so it only
needs to be computed once.
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4 The gradient of the cost function

The cost function is defined in Eq. 5 in the main text; we repeat it here for conveninence:

ψ ({βij}, {v
µ}) =

m
∑

µ=1

(

1

n
‖v̇‖

2

v=v
µ + ηs α̃ε (J

µ)

)

+
ηF
n2
‖W‖

2

F
(5)

where v̇ ≡ dv/dt.

We show here how to compute the gradient of Eq. 5 with respect to the parameters we are optimising
over. These parameters consist of the weight parameters βij and the activity vµi of each auxiliary
neuron i > nE in each attractor µ. In our simulations, we used nE = 100, nI = 50 and 30 memories,
yielding a total number of free parameters of 1502 + 30 · 50 = 24000.

We now proceed to compute the derivatives of each of the terms in ψ.

4.1 Fist term: velocity ‖v̇‖2

To simplify the notations, we consider a single attractor, and thus drop the ·µ superscript. We start
with the derivatives with respect to the weight parameters. Note that Wij depends only on βij , so
the application of the chain rule is straightforward:

∂‖v̇‖2

∂βℓp
=
∂‖v̇‖2

∂Wℓp

∂Wℓp

∂βℓp
= 2

∂Wℓp

∂βℓp

∑

i

v̇i
∂v̇i
∂Wℓp

(S12)

The first partial derivative is solved starting from Eq. 2:

∂Wℓp

∂βℓp
= sp

1

1 + exp(−βℓp)
= sp(1− exp(−|Wℓp|)) (S13)

The second partial derivative is solved using Eq. 3:

∑

i

v̇i
∂v̇i
∂Wℓp

=
∑

i

v̇i
τi





∑

j

δiℓ δjp g(vj)





=
v̇ℓ
τℓ
g(vp) (S14)

Due to the absence of autapses, the value of Eq. S14 should be null for ℓ = p. We can safely ignore
this condition as the value of Eq. S13 is zero for null weights, so that the product in Eq. S12 is also
zero.

The derivative with respect to the activity of each auxiliary neuron ℓ (again dropping the ·µ super-
script for convenience) is the following:

∂‖v̇‖2

∂vℓ
= 2

∑

i

v̇i
∂v̇i
∂vℓ

= 2
∑

i

v̇i
τi



−δiℓ +
∑

j

Wij δjℓ g
′(vℓ)





= 2
∑

i

v̇i
τi

(−δiℓ +Wiℓ g
′(vℓ)) (S15)

4.2 Second term: SSA of the Jacobian

The Jacobian matrix is given by Eq. S6. Section 3 illustrates how the SSA and all the partial deriva-
tives are computed. Our free parameters, however, are not the Jij terms: calculating the gradient
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with respect to weight and rate parameters requires the use of the chain rule. Once again, for sim-
plicity, we consider a single attractor, and we start from the derivative with respect to the weight
parameters:

∂α̃ε (J)

∂βℓp
=
∑

ij

∂α̃ε (J)

∂Jij

∂Jij
∂Wℓp

∂Wℓp

∂βℓp
(S16)

The fist term is given by Eq. S11, the third term has already been computed in Eq. S13, so only the
middle term needs to be computed. Using Eq. S6:

∂Jij
∂Wℓp

=
1

τi
δiℓ δjp g

′(vj) (S17)

For the no-autapses condition, this value should be zero for l = m, but once again this condition is
covered by the third term of Eq. S16. By virtue of the delta-functions, the sum in Eq S16 simplifies
as follows:

∂α̃ε (J)

∂βℓp
=

1

τℓ
g′(vp)

∂α̃ε (J)

∂Jℓp

∂Wℓp

∂βℓp
(S18)

The derivative w.r.t. the activity of each auxiliary neuron ℓ > nE is as follows:

∂α̃ε (J)

∂vℓ
=
∑

ij

∂α̃ε (J)

∂Jij

∂Jij
∂vℓ

; using Eq. S6
∂Jij
∂vℓ

=
1

τi
Wij δjℓ g

′′(vℓ) (S19)

This leads to:
∂α̃ε (J)

∂uℓ
=
∑

i

1

τi
Wiℓ g

′′(vℓ)
∂α̃ε (J)

∂Jiℓ
(S20)

4.3 Third term: weight penalty

The only term left in Eq. 5 is the penalty on large weights, expressed as the squared Frobenius norm
of the W matrix.

‖W‖2F :=
∑

ij

W 2
ij (S21)

The only non-zero derivatives are, of course, those with respect to the weight parameters:

∂‖W‖2F
∂βℓp

= 2Wℓp

∂Wℓp

∂βℓp
(S22)

4.4 Complete gradients

We can now write the partial derivatives of the total cost function, Eq. 5. The derivative with respect
to the weight parameters is given by Eq. S12 to S14, Eq. S18 and Eq. S22

∂

∂βℓp
ψ ({βij}, {v

µ}) =

= 2 sp(1− exp(−|Wℓp|))

[

1

m τℓ

m
∑

µ=1

(

v̇µℓ
n
g
(

vµp
)

+ ηs
∂α̃ε (J)

∂Jℓp
g′
(

vµp
)

)

+
ηF Wℓp

n2

] (S23)

The derivative with respect to the rate of an auxiliary neuron for a specific attractor is given by
Eqs. S15 and S20:

∂

∂vµℓ
ψ ({βij}, {v

µ}) =

=
2

m

∑

i

1

τi

(

v̇i
n

(−δiℓ +Wiℓ g
′(vµℓ )) + ηs Wiℓ g

′′(vµℓ )
∂α̃ε (J)

∂Jiℓ

) (S24)
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