
LEARNING

Neural networks subtract and
conquer
Two theoretical studies reveal how networks of neurons may behave

during reward-based learning.

GUILLAUME HENNEQUIN

T
o thrive in their environments, animals

must learn how to process lots of inputs

and take appropriate

actions (Figure 1A). This sort of learning is

thought to involve changes in the ability of syn-

apses (the junctions between neurons) to trans-

mit signals, with these changes being facilitated

by rewards such as food. However, reward-

based learning is difficult because reward signals

do not provide specific instructions for individual

synapses on how they should change. Moreover,

while the latest algorithms for reinforcement

learning achieve human-level performance on

many problems (see, for example, Mnih et al.,

2015), we still do not fully understand how

brains learn from rewards. Now, in eLife, two

independent theoretical studies shed new light

on the neural mechanisms of learning.

The studies address two complementary

aspects of reward-based learning in recurrent

neuronal networks – artificial networks of neu-

rons that exhibit dynamic, temporally-

varying activity. In both studies, actions are gen-

erated by a recurrent network (the “decision

network”) that is composed of hundreds of inter-

connected neurons that continuously influence

each others’ activity (Figure 1). The decision net-

work integrates sensory information about the

state of the environment and responds with an

action that may or may not result in a reward.

The network can also change the ability of indi-

vidual synapses to transmit signals, referred to

as synapse strength. Over a period of time,

increasing the strength of synapses that pro-

mote an action associated with a reward leads

to the network choosing actions that receive

rewards more often, which results in learning.

At the core of both studies lies a classic algo-

rithm for reinforcement learning known as REIN-

FORCE, which aims to maximize the expected

reward in such scenarios (Figure 1A; Wil-

liams, 1992). In this algorithm, the strength of a

synapse that connects neuron j to neuron i, Wij,

changes to Wij + aEij(t) x (R(t) � Rb), where a is a

constant, Eij is a quantity called the eligibility, t is

time, R is the reward and Rb is a quantity called

the reward baseline. The eligibility Eij(t)

expresses how much a small change of Wij

affects the action taken by the decision network

at time t.

The conceptual simplicity of REINFORCE and

the fact that it can be applied to the tasks com-

monly studied in neuroscience labs make it an

attractive starting point to study the neural

mechanisms of reward-based learning. Yet,

this algorithm raises two fundamental questions.

Firstly, how can a synapse estimate its own eligi-

bility, using only locally-available information?

Indeed, in a recurrent network, a change in
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synapse strength can influence a third neuron,

implying that the eligibility depends on the

activity of that third neuron, which the synapse

will have never seen. Perhaps more importantly,

in scenarios where the reward arrives after the

network has produced long sequences of

actions, the synapse must search the stream of

recently experienced electrical signals for those

that significantly influenced the action choice, so

that the corresponding synapses can be

reinforced. Secondly, how can the network com-

pute an adequate reward baseline Rb?

In one of the papers Thomas Miconi of the

Neurosciences Institute in La Jolla reports,

somewhat surprisingly, that simply accumulating

over time a superlinear function (such as f(x) =

x3) of the product of the electrical signals on

both sides of the synapse, returns a substitute

for the optimal synapse eligibility that works well

in practice (Miconi, 2017). This form of eligibility

turns REINFORCE into a rule for the ability of

synapses to strengthen or weaken (a property

known as synaptic plasticity) that is more

biologically realistic than the original optimal

REINFORCE algorithm (Figure 1B) and is similar

in spirit to models of synaptic plasticity involving

neuromodulators such as dopamine or acetyl-

choline (Frémaux and Gerstner, 2016).

Miconi’s practical use of a superlinear func-

tion seems key to successful learning in the pres-

ence of delayed rewards. This nonlinearity tends

to discard small (and likely inconsequential) co-

fluctuations in electrical activity on both sides of

the synapse, while amplifying the larger ones.

While a full understanding of the success of this

rule will require more analysis, Miconi convinc-

ingly demonstrates successful training of recur-

rent networks on a variety of tasks known to rely

on complex internal dynamics. Learning also

promotes the emergence of collective dynamics

similar to those observed in real neural circuits

(for example, Stokes et al., 2013; Mante et al.,

2013).

As predicted by the theory of

REINFORCE (Peters and Schaal, 2008), Miconi

found it essential to subtract a baseline reward

(Rb) from the actual reward (R) obtained at the

end of the trial. While Miconi simply assumes

that such predictions are available, Francis Song,

Guangyu Yang and Xiao-Jing Wang of New York

University and NYU Shanghai wondered how the

brain could explicitly learn such detailed,

dynamic reward predictions (Song et al., 2017).

Alongside the main decision network, they

trained a second recurrent network, called the

“value network”, to continuously predict the
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Figure 1. Models for reward-based learning in neural networks. (A) Many behavioral tasks can be formulated as reward-based (or reinforcement)

learning problems: the animal learns to use sensory inputs to perform actions that maximize the expected reward. Miconi and, independently, Song

et al. addressed two complementary aspects of how brain circuits might solve such problems. (B) Miconi studied a biologically plausible form of a

synaptic plasticity rule (ability of a synapse to strengthen or weaken), which is modulated by reward and is capable of learning complex tasks by

adjusting the connectivity of a “decision network” (Miconi, 2017). The strengths of synapses are modified according to a function of the electrical

activities on each side of the synapse and a delayed reward signal (R) delivered at the end of each trial. Critically, successful learning requires an

appropriate reward baseline (Rb) to be subtracted from the actual reward, but exactly how this baseline can be estimated by another circuit is not

addressed. (C) Song et al. show that the total future reward can be estimated dynamically by a separate “value network” that integrates the rewards

received from the environment as well as the activity (and outputs) of the decision network (Song et al., 2017). The output of the value network then

serves as a reward baseline used to modulate a mathematically optimal, but biologically infeasible, rule that governs the synaptic plasticity in the

decision network. Neurons are shown as gray circles, and synapses as black lines with a circle at one end.
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total future reward on the basis of past activity

in the decision network (including past actions;

Figure 1C). These reward predictions were then

subtracted from the true reward to guide learn-

ing in the decision network. Song et al. were

also able to train networks on an impressive

array of diverse cognitive tasks, and found com-

pelling similarities between the dynamics of their

decision networks and neural recordings.

Importantly, although Song et al. used syn-

apse eligibilities (with a few other machine learn-

ing tricks) that are not biologically plausible to

train both networks optimally, their setup now

makes it possible to ask other questions related

to how neurons represent uncertainty and value.

For example, when it is only possible to observe

part of the surrounding environment, optimal

behavior often requires individuals to take their

own internal uncertainty about the state of the

world into account (e.g. allowing an animal to

opt for lower, but more certain rewards). Net-

works trained in such contexts are indeed found

to select actions on the basis of an internal sense

of uncertainty on each trial. Song et al. tested

their model in a simple economic decision-mak-

ing task where in each trial the network is

offered a choice of two alternatives carrying dif-

ferent amounts of rewards. They found that

there are neurons in the value network that

exhibit selectivity to offer value, choice and

value, or choice alone. This is in agreement with

recordings from the brains of monkeys perform-

ing the same task.

The complementary findings of these two

studies could be combined into a unified model

of reward-based learning in recurrent networks.

To be able to build networks that not only

behave, but also learn, like animals promises to

bring us closer to understanding the neural basis

of behavior. However, progress from there will

rely critically on our ability to analyze the time-

dependent strategies used by trained networks

(Sussillo and Barak, 2013), and to

identify neural signatures of such strategies.
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