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Abstract

Multiple lines of evidence support the notion that the brain performs probabilistic
inference in multiple cognitive domains, including perception and decision mak-
ing. There is also evidence that probabilistic inference may be implemented in the
brain through the (quasi-)stochastic activity of neural circuits, producing samples
from the appropriate posterior distributions, effectively implementing a Markov
chain Monte Carlo algorithm. However, time becomes a fundamental bottleneck
in such sampling-based probabilistic representations: the quality of inferences de-
pends on how fast the neural circuit generates new, uncorrelated samples from
its stationary distribution (the posterior). We explore this bottleneck in a sim-
ple, linear-Gaussian latent variable model, in which posterior sampling can be
achieved by stochastic neural networks with linear dynamics. The well-known
Langevin sampling (LS) recipe, so far the only sampling algorithm for continu-
ous variables of which a neural implementation has been suggested, naturally fits
into this dynamical framework. However, we first show analytically and through
simulations that the symmetry of the synaptic weight matrix implied by LS yields
critically slow mixing when the posterior is high-dimensional. Next, using meth-
ods from control theory, we construct and inspect networks that are optimally fast,
and hence orders of magnitude faster than LS, while being far more biologically
plausible. In these networks, strong – but transient – selective amplification of
external noise generates the spatially correlated activity fluctuations prescribed by
the posterior. Intriguingly, although a detailed balance of excitation and inhibition
is dynamically maintained, detailed balance of Markov chain steps in the resulting
sampler is violated, consistent with recent findings on how statistical irreversibil-
ity can overcome the speed limitation of random walks in other domains.

1 Introduction

The high speed of human sensory perception [1] is puzzling given its inherent computational com-
plexity: sensory inputs are noisy and ambiguous, and therefore do not uniquely determine the state
of the environment for the observer, which makes perception akin to a statistical inference problem.
Thus, the brain must represent and compute with complex and often high-dimensional probability
distributions over relevant environmental variables. Most state-of-the-art machine learning tech-
niques for large scale inference trade inference accuracy for computing speed (e.g. [2]). The brain,
on the contrary, seems to enjoy both simultaneously [3].

Some probabilistic computations can be made easier through an appropriate choice of representa-
tion for the probability distributions of interest. Sampling-based representations used in Monte Carlo
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techniques, for example, make computing moments of the distribution or its marginals straightfor-
ward. Indeed, recent behavioural and neurophysiological evidence suggests that the brain uses such
sampling-based representations by neural circuit dynamics implementing a Markov chain Monte
Carlo (MCMC) algorithm such that their trajectories in state space produce sequential samples from
the appropriate posterior distribution [4, 5, 6].

However, for sampling-based representations, speed becomes a key bottleneck: computations in-
volving the posterior distribution become accurate only after enough samples have been collected,
and one has no choice but to wait for those samples to be delivered by the circuit dynamics. For
sampling to be of any practical use, the interval that separates the generation of two independent
samples must be short relative to the desired behavioral timescale. Single neurons can integrate
their inputs on a timescale τm ≈ 10 − 50 ms, whereas we must often make decisions in less than
a second: this leaves just enough time to use (i.e. read out) a few tens of samples. What kinds of
neural circuit dynamics are capable of producing uncorrelated samples at ∼100 Hz remains unclear.

Here, we introduce a simple yet non-trivial generative model and seek plausible neuronal network
dynamics for fast sampling from the corresponding posterior distribution. While some standard
machine learning techniques such as Langevin or Gibbs sampling do suggest “neural network”-
type solutions to sampling, not only are the corresponding architectures implausible in fundamental
ways (e.g. they violate Dale’s law), but we show here that they lead to unacceptably slow mixing
in high dimensions. Although the issue of sampling speed in general is well appreciated in the
context of machine learning, there have been no systematic approaches to tackle it owing to a large
part to the fact that sampling speed can only be evaluated empirically in most cases. In contrast,
the simplicity of our generative model allowed us to draw an analytical picture of the problem
which in turn suggested a systematic approach for solving it. Specifically, we used methods from
robust control to discover the fastest neural-like sampler for our generative model, and to study its
structure. We find that it corresponds to greatly non-symmetric synaptic interactions (leading to
statistical irreversibility), and mathematically nonnormal1 circuit dynamics [7, 8] in close analogy
with the dynamical regime in which the cortex has been suggested to operate [9].

2 Linear networks perform sampling under a linear Gaussian model

We focus on a linear Gaussian latent variable model which generates observations h ∈ R
M as

weighted sums of N features A ≡ (a1; . . . ;aN ) ∈ R
M×N with jointly Gaussian coefficients r ∈

R
N , plus independent additive noise terms (Fig. 1, left). More formally:

p(r) = N (r; 0,C) and p(h|r) = N
(

h;Ar, σ2
hI
)

(1)

where I denotes the identity matrix. The posterior distribution is multivariate Gaussian, p(r|h) =
N (r;µ(h),Σ), with

Σ =
(

C−1 +A⊤A/σ2
h

)−1
and µ(h) = ΣA⊤h/σ2

h. (2)

where we made explicit the fact that under this simple model, only the mean, µ(h), but not the
covariance of the posterior, Σ, depends on the input, h.

We are interested in neural circuit dynamics for sampling from p(r|h), whereby the data (observa-
tion) h is given as a constant feedforward input to a population of recurrently connected neurons,
each of which encodes one of the latent variables and also receives inputs from an external, private
source of noise ξ (Fig. 1, right). Our goal is to devise a network such that the activity fluctuations
r(t) in the recurrent layer have a stationary distribution that matches the posterior, for any h.

Specifically, we consider linear recurrent stochastic dynamics of the form:

dr =
dt

τm
[−r(t) +Wr(t) + Fh] + σξ

√

2

τm
dξ(t) (3)

where τm = 20 ms is the single-unit “membrane” time constant, and dξ is a Wiener process of unit
variance, which is scaled by a scalar noise intensity σξ. The activity ri(t) could represent either the

1“Nonnormal” should not be confused with “non-Gaussian”: a matrix M is nonnormal iff MM
⊤ 6=

M
⊤
M.
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Figure 1: Sampling under a
linear Gaussian latent vari-
able model using neuronal
network dynamics. Left:
schematics of the generative
model. Right: schematics of
the recognition model. See text
for details.

membrane potential of neuron i, or the deviation of its momentary firing rate from a baseline. The
matrices F and W contain the feedforward and recurrent connection weights, respectively.

The stationary distribution of r is indeed Gaussian with a mean µr(h) = (I −W)−1Fh and a co-

variance matrix Σr ≡
〈

(r(t)− µr)(r(t)− µr)⊤
〉

t
. For the following, we will use the dependence

of Σr on W (and σξ) given implicitly by the following Lyapunov equation [10]:

(W − I)Σr +Σr(W − I)⊤ = −2σ2
ξI (4)

Note that in the absence of recurrent connectivity (W = 0), the variance of every ri(t) would be
exactly σ2

ξ . Note also that, just as required (see above), only the mean, µr(h), but not the covariance,

Σr, depends on the input, h.

In order for the dynamics of Eq. 3 to sample from the correct posteriors, we must choose F, W and
σξ such that µr(h) = µ(h) for any h, and Σr = Σ. One possible solution (which, importantly, is
not unique, as we show later) is

F = (σξ/σh)
2
A⊤ and W = WL ≡ I− σ2

ξ Σ
−1 (5)

with arbitrary σξ > 0.

In the following, we will be interested in the likelihood matrix A only insofar as it affects the
posterior covariance matrix Σ, which turns out to be the main determinant of sampling speed. We
will therefore directly choose some covariance matrix Σ, and set h = 0 without loss of generality.

3 Langevin sampling is very slow

Langevin sampling (LS) is a common sampling technique [2, 11, 12], and in fact the only one that
has been proposed to be neurally implemented for continuous variables [6, 13]. According to LS, a
stochastic dynamical system performs “noisy gradient ascent of the log posterior”:

dr =
1

2

∂

∂r
log p(r|h) dt+ dξ (6)

where dξ is a unitary Wiener process. When r|h is Gaussian, Eq. 6 reduces to Eq. 3 for σξ = 1 and
the choice of F and W given in Eq. 5 – hence the notation WL above. Note that WL is symmetric.

As we show now, this choice of weight matrix leads to critically slow mixing (i.e. very long auto-
correlation time scales in r(t)) when N is large. In a linear network, the average autocorrelation
length is dominated by the decay time constant τmax of the slowest eigenmode, i.e. the eigenvector
of (W− I) associated with the eigenvalue λW−I

max which, of all the eigenvalues of (W− I), has the
largest real part (which must still be negative, to ensure stability). The contribution of the slowest
eigenmode to the sample autocorrelation time is τmax = −τm/Re

(

λW−I
max

)

, so sampling becomes

very slow when Re
(

λW−I
max

)

approaches 0. This is, in fact, what happens with LS as N → ∞. In-
deed, we could derive the following generic lower bound (details can be found in our Supplementary
Information, SI):

λWL−I

max ≥ −(σξ/σ0)
2

√

1 +Nσ2
r

(7)

which is shown as dashed lines in Fig. 2. Thus, LS becomes infinitely slow in the large N limit

when pairwise correlations do not vanish in that limit (or at least not as fast as N−
1

2 in their std.).

Slowing becomes even worse when Σ is drawn from the inverse Wishart distribution with ν degrees
of freedom and scale matrix ω−2I (Fig. 2). We choose ν = N−1+⌊σ−2

r ⌋ and ω−2 = σ2
0(ν−N−1)
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Figure 2: Langevin sampling (LS) is slow in high-dimension. Random covariance matrices Σ of
size N are drawn from an inverse Wishart distribution with parameters chosen such that the average
diagonal element (variance) is σ2

0 = 1 and the distribution of pairwise correlations has zero mean
and variance σ2

r (right). Sampling from N (0,Σ) using a stochastic neural network (cf. Fig. 1) with
W = WL (LS, symmetric solution) becomes increasingly slow as N grows, as indicated by the
relative decay time constant τmax/τm of the slowest eigenmode of (WL − I) (left), which is also
the negative inverse of its largest eigenvalue (middle). Dots indicate the numerical evaluation of the
corresponding quantities, and errorbars (barely noticeable) denote standard deviation across several
random realizations of Σ. Dashed lines correspond to the generic bound in Eq. 7. Solid lines are
obtained from random matrix theory under the asssumption that Σ is drawn from an inverse Wishart
distribution (Eq. 8). Parameters: σξ = σ0 = 1.

such that the expected value of a diagonal element (variance) in Σ is σ2
0 , and the distribution of

pairwise correlations is centered on zero with variance σ2
r . The asymptotic behavior of the largest

eigenvalue of Σ−1 (the square of the smallest singular value of a random ν×N rectangular matrix)
is known from random matrix theory (e.g. [14]), and we have for large N :

λWL−I

max ≈ − (σξ/σ0)
2

⌊σ−2
r ⌋ − 2

(

√

N − 1 + ⌊σ−2
r ⌋ −

√
N

)2

∼ −O
(

1

N

)

(8)

This scaling behavior is shown in Fig. 2 (solid lines). In fact, we can also show (cf. SI) that LS is
(locally) the slowest possible choice (see Sec. 4 below for a precise definition of “slowest”, and SI
for details).

Note that both Eqs. 7-8 are inversely proportional to the ratio (σ0/σξ), which tells us how much
the recurrent interactions must amplify the external noise in order to produce samples from the
right stationary activity distribution. The more amplification is required (σ0 ≫ σξ), the slower the
dynamics of LS. Conversely, one could potentially make Langevin sampling faster by increasing σξ,

but σξ would need to scale as
√
N to annihilate the critical slowing problem. This – in itself – is

unrealistic; moreover, it would also require the resulting connectivity matrix to have a large negative
diagonal (O(−N)) – ie. the intrinsic neuronal time constant τm to scale as O(1/N) –, which is
perhaps even more unrealistic.2

Note also that LS can be sped up by appropriate “preconditioning” (e.g. [15, 16]), for example using
the inverse Hessian of the log-posterior. In our case, a simple calculation shows that this corresponds
to removing all recurrent connections, and pushing the posterior covariance matrix to the external
noise sources, which is only postponing the problem to some other brain network.

Finally, LS is fundamentally implausible as a neuronal implementation: it imposes symmetric synap-
tic interactions, which is simply not possible in the brain due to the existence of distinct classes of
excitatory and inhibitory neurons (Dale’s principle). In the following section, we show that networks
can be constructed that overcome all the above limitations of LS in a principled way.

4 General solution and quantification of sampling speed

While Langevin dynamics (Eq. 6) provide a general recipe for sampling from any given posterior
density, they unduly constrain the recurrent interactions to be symmetric – at least in the Gaussian

2From a pure machine learning perspective, increasing σξ is not an option either: the increasing stiffness of
Eq. 6 would either require the use of a very small integration step, or would lead to arbitrarily small acceptance
ratios in the context of Metropolis-Hastings proposals.
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Figure 3: How fast is the fastest sampler? (A) Scalar measure of the statistical dependency be-
tween any two samples collected kτm seconds apart (cf. main text), for Langevin sampling (black),
Gibbs sampling (blue, assuming a full update sweep is done every τm), a series of networks (brown
to red) with connectivities given by Eq. 9 where the elements of the skew-symmetric matrix S were
drawn iid. from N (0, ζ2) for different values of ζ (see also panel B), the unconstrained optimized
network (yellow), and the optimized E/I network (green). For reference, the dashed gray line shows
the behavior of a network in which there are no recurrent interactions, and the posterior covariance
is encoded in the covariance of the input noise, which in fact corresponds to Langevin sampling
with inverse Hessian (“Newton”-like) preconditioning [16]. (B) Total slowing cost ψslow(S) when
Si<j ∼ N (0, ζ2), for increasing values of ζ. The Langevin and the two optimized networks are
shown as horizontal lines for comparison. (C) Same as in (B), showing the root mean square (RMS)
value of the synaptic weights. Parameter values: N = 200, NI = 100, σξ = 1, τm = 20 ms.

case. To see why this is a drastic restriction, let us observe that any connectivity matrix of the form

W(S) = I+
(

−σ2
ξI+ S

)

Σ−1 (9)

where S is an arbitrary skew-symmetric matrix (S⊤ = −S), solves Eq. 4, and therefore induces
the correct stationary distribution N (·,Σ) under the linear stochastic dynamics of Eq. 3. Note that
Langevin sampling corresponds to S = 0 (cf. Eq. 5). In general, though, there are O(N2) degrees of
freedom in the skew-symmetric matrix S, which could perhaps be exploited to increase the mixing
rate. In Sec. 5, we will show that indeed a large gain in sampling speed can be obtained through an
appropriate choice of S. For now, let us quantify slowness.

Let Λ ≡ diag (Σ) be the diagonal matrix that contains all the posterior variances, and K(S, τ) ≡
〈

(r(t+ τ)− µ)(r(t)− µ)⊤
〉

t
be the matrix of lagged covariances among neurons under the sta-

tionary distribution of the dynamics (so that Λ−
1

2K(S, τ)Λ−
1

2 is the autocorrelation matrix of the
network). Note that K(S, 0) = Σ is the posterior covariance matrix, and that for fixed Σ, σ2

ξ and

τm, K(S, τ) depends only on the lag τ and on the matrix of recurrent weights W, which itself
depends only on the skew-symmetric matrix S of free parameters. We then define a “total slowing
cost”

ψslow(S) =
1

2τmN2

∫ ∞

0

∥

∥

∥
Λ−

1

2K(S, τ)Λ−
1

2

∥

∥

∥

2

F
dτ (10)

which penalizes the magnitude of the temporal (normalized) autocorrelations and pairwise cross-

correlations in the sequence of samples generated by the circuit dynamics. Here ‖M‖2F ≡
trace(MM⊤) =

∑

ij M
2
ij is the squared Frobenius norm of M.

Using the above measure of slowness, we revisit the mixing behavior of LS on a toy covariance
matrix Σ drawn from the same inverse Wishart distribution mentioned above with parameters N =
200, σ2

0 = 2 and σr = 0.2. We further regularize Σ by adding the identity matrix to it, which
does not change anything in terms of the scaling law of Eq. 8 but ensures that the diagonal of WL

remains bounded as N grows large. We will use the same Σ in the rest of the paper. Figure 3A

shows
∥

∥Λ−1/2K(S, τ)Λ−1/2
∥

∥

F
as a function of the time lag τ : as predicted in Sec. 3, mixing is

indeed an order of magnitude slower for LS (S = 0, solid black line) than the single-neuron time
constant τm (grey dashed line). Note that ψslow (Eq. 10, Fig. 3B) is proportional to the area under
the squared curve shown in Fig. 3A. Sample activity traces for this network, implementing LS, can
be found in Fig. 4B (top).

Using the same measure of slowness, we also inspected the speed of Gibbs sampling, another widely
used sampling technique (e.g. [17]) inspiring neural network dynamics for sampling from distribu-
tions over binary variables [18, 19, 20]. Gibbs sampling defines a Markov chain that operates in

5



discrete time, and also uses a symmetric weight matrix. In order to compare its mixing speed with
that of our continuous stochastic dynamics, we assume that a full update step (in which all neurons
have been updated once) takes time τm. We estimated the integrand of the slowing cost (Eq. 10)
numerically using 30’000 samples generated by the Gibbs chain (Fig. 3A, blue). Gibbs sampling is
comparable to LS here: samples are still correlated on a timescale of order ∼ 50 τm.

Finally, one may wonder how a random choice of S would perform in terms of decorrelation speed.
We drew random skew-symmetric S matrices from the Gaussian ensemble, Si<j ∼ N (0, ζ2), and
computed the slowing cost (Fig. 3, red). As the magnitude ζ of S increases, sampling becomes
faster and faster until the dynamics is about as fast as the single-neuron time constant τm. However,
the synaptic weights also grow with ζ (Fig. 3C), and we show in Sec. 5 that an even faster sampler
exists that has comparatively weaker synapses. It is also interesting to note that the slope of ψslow at
ζ = 0 is zero, suggesting that LS is in fact maximally slow (we prove this formally in the SI).

5 What is the fastest sampler?

We now show that the skew-symmetric matrix S can be optimized for sampling speed, by directly
minimizing the slowing cost ψslow(S) (Eq. 10), subject to an L2-norm penalty. We thus seek to
minimize:

L(S) ≡ ψslow(S) +
λL2

2N2
‖W(S)‖2F . (11)

The key to performing this minimization is to use classical Ornstein-Uhlenbeck theory (e.g. [10]) to
bring our slowness cost under a form mathematically analogous to a different optimization problem
that has arisen recently in the field of robust control [21]. We can then use analytical results obtained
there concerning the gradient of ψslow, and obtain the overall gradient:

∂L(S)
∂S

=
1

N2

[

(Σ−1PQ)⊤ − (Σ−1PQ)
]

+
λL2

N2

[

SΣ−2 +Σ−2S
]

(12)

where matrices P and Q are obtained by solving two dual Lyapunov equations. All details can be
found in our SI.

We initialized S with random, weak and uncorrelated elements (cf. the end of Sec. 4, with ζ = 0.01),
and ran the L-BFGS optimization algorithm using the gradient of Eq. 12 to minimize L(S) (with
λL2

= 0.1). The resulting, optimal sampler is an order of magnitude faster than either Langevin or
Gibbs sampling: samples are decorrelated on a timescale that is even faster than the single-neuron
time constant τm (Fig. 3A, orange). We also found that fast solutions (with correlation length ∼ τm)
can be found irrespective of the size N of the state space (not shown), meaning that the relative
speed-up between the optimal solution and LS grows with N (cf. Fig. 2).

The optimal Sopt induces a weight matrix Wopt given by Eq. 9 and shown in Fig. 4A (middle).
Notably, Wopt is no longer symmetric, and its elements are much larger than in the Langevin
symmetric solution WL with the same stationary covariance, albeit orders of magnitude smaller
than in random networks of comparable decorrelation speed (Fig. 3C).

It is illuminating to visualize activity trajectories in the plane defined by the topmost and bottommost
eigenvectors of Σ, i.e. the first and last principal components (PCs) of the network activity (Fig. 4C).
The distribution of interest is broad along some dimensions, and narrow along others. In order to
sample efficiently, large steps ought to be taken along directions in which the distribution is broad,
and small steps along directions in which the distribution is narrow. This is exactly what our optimal
sampler does, whereas LS takes small steps along both broad and narrow directions (Fig. 4C).

6 Balanced E/I networks for fast sampling

We can further constrain our network to obey Dale’s law, i.e. the separation of neurons into separate
excitatory (E) and inhibitory (I) groups. The main difficulty in building such networks is that picking
an arbitrary skew-symmetric matrix S in Eq. 9 will not yield the column sign structure of an E/I
network in general. Therefore, we no longer have a parametric form for the solution matrix manifold
on which to find the fastest network. However, by extending the methods of Sec. 5, described in
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Figure 4: Fast sampling with optimized networks. (A) Synaptic weight matrices for the Langevin
network (top), the fastest sampler (middle) and the fastest sampler that obeys Dale’s law (bottom).
Note that the synaptic weights in both optimized networks are an order of magnitude larger than in
the symmetric Langevin solution. The first two networks are of size N = 200, while the optimized
E/I network has size N +NI = 300. (B) 500 ms of spontaneous network activity (h = 0) in each of
the three networks, for all of which the stationary distribution of r (restricted here to the first 40 neu-
rons) is the same multivariate Gaussian. (C) Left: activity trajectories (the same 500 ms as shown
in (B)) in the plane defined by the topmost and bottommost eigenvectors of the posterior covari-
ance matrix Σ (corresponding to the first and last principal components of the activity fluctuations
r(t)). For the E/I network, the projection is restricted to the excitatory neurons. Right: distribu-
tion of increments along both axes, measured in 1 ms time steps. Langevin sampling takes steps of
comparable size along all directions, while the optimized networks take much larger steps along the
directions of large variance prescribed by the posterior. (D) Distributions of correlations between
the time courses of total excitatory and inhibitory input in individual neurons.

detail in our SI, we can still formulate the problem as one of unconstrained optimization, and obtain
the fastest, balanced E/I sampler.

We consider the posterior to be encoded in the activity of the N = 200 excitatory neurons, and add
NI = 100 inhibitory neurons which we regard as auxiliary variables, in the spirit of Hamiltonian
Monte Carlo methods [11]. Consequently, the E-I and I-I covariances are free parameters, while
the E-E covariance is given by the target posterior. For additional biological realism, we also forbid
self-connections as they can be interpreted as a modification of the intrinsic membrane time constant
of the single neurons, which in principle cannot be arbitrarily learned.

The speed optimization yields the connectivity matrix shown in Fig. 4A (bottom). Results for this
network are presented in a similar format as before, in the same figures. Sampling is almost as fast
as in the best (regularized) unconstrained network (compare yellow and green in Fig. 3), indicating
that Dale’s law – unlike the symmetry constraint implicitly present in Langevin sampling – is not
fundamentally detrimental to mixing speed. Moreover, the network operates in a regime of excita-
tion/inhibition balance, whereby the total E and I input time courses are correlated in single cells
(Fig. 4D, bottom). This is true also in the unconstrained optimal sampler. In contrast, E and I inputs
are strongly anti-correlated in LS.
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7 Discussion

We have studied sampling for Bayesian inference in neural circuits, and observed that a linear
stochastic network is able to sample from the posterior under a linear Gaussian latent variable model.
Hidden variables are directly encoded in the activity of single neurons, and their joint activity un-
dergoes moment-to-moment fluctuations that visit each portion of the state space at a frequency
given by the target posterior density. To achieve this, external noise sources fed into the network are
amplified by the recurrent circuitry, but preferentially amplified along the state-space directions of
large posterior variance. Although, for the very simple linear Gaussian model we considered here,
a purely feed-forward architecture would also trivially be able to provide independent samples (ie.
provide samples that are decorrelated at the time scale of τm), the network required to achieve this
is deeply biologically implausible (see SI).

We have shown that the choice of a symmetric weight matrix – equivalent to LS, a popular ma-
chine learning technique [2, 11, 12] that has been suggested to underlie neuronal network dynamics
sampling continuous variables [6, 13] – is most unfortunate. We presented an analytical argument
predicting dramatic slowing in high-dimensional latent spaces, supported by numerical simulations.
Even in moderately large networks, samples were correlated on timescales much longer than the
single-neuron decay time constant.

We have also shown that when the above symmetry constraint is relaxed, a family of other solutions
opens up that can potentially lead to much faster sampling. We chose to explore this possibility
from a normative viewpoint, optimizing the network connectivity directly for sampling speed. The
fastest sampler turned out to be highly asymmetric and typically an order of magnitude faster than
Langevin sampling. Notably, we also found that constraining each neuron to be either excitatory
or inhibitory does not impair performance while giving a far more biologically plausible sampler.
Dale’s law could even provide a natural safeguard against reaching slow symmetric solutions such
as Langevin sampling, which we saw was the worst-case scenario (cf. also SI).

It is worth noting that Wopt is strongly nonnormal.3 Deviation from normality has important con-
sequences for the dynamics of our networks: it makes the network sensitive to perturbations along
some directions in state space. Such perturbations are rapidly amplified into large, transient ex-
cursions along other, relevant directions. This phenomenon has been shown to explain some key
features of spontaneous activity in primary visual cortex [9] and primary motor cortex [22].

Several aspects would need to be addressed before our proposal can crystalize into a more thorough
understanding of the neural implementation of the sampling hypothesis. First, can local synaptic
plasticity rules perform the optimization that we have approached from an algorithmic viewpoint?
Second, what is the origin of the noise that we have hypothesized to come from external sources?
Third, what kind of nonlinearity must be added in order to allow sampling from non-Gaussian distri-
butions, whose shapes may have non-trivial dependencies on the observations? Also, does the main
insight reached here – namely that fast samplers are to be found among nonsymmetric, nonnormal
networks – carry over to the nonlinear case? As a proof of principle, in preliminary simulations, we
have shown that speed optimization in a linearized version of a nonlinear network (with a tanh gain
function) does yield fast sampling in the nonlinear regime, even when fluctuations are strong enough
to trigger the nonlinearity and make the resulting sampled distribution non-Gaussian (details in SI).

Finally, we have also shown (see SI) that the Langevin solution is the only network that satisfies the
detailed balance condition [23] in our model class; reversibility is violated in all other stochastic net-
works we have presented here (random, optimal, optimal E/I). The fact that these networks are faster
samplers is in line with recent machine learning studies on how non-reversible Markov chains can
mix faster than their reversible counterparts [24]. The construction of such Monte-Carlo algorithms
has proven challenging [25, 26, 27], suggesting that the brain – if it does indeed use sampling-based
representations – might have something yet to teach us about machine learning.

Acknowledgements This work was supported by the Wellcome Trust (GH, ML), the Swiss Na-
tional Science Foundation (GH) and the Gatsby Charitable Foundation (LA). Our code will be made
freely available from GH’s personal webpage.

3Indeed, the sum of the squared moduli of its eigenvalues accounts for only 25% of ‖Wopt‖
2
F [7]. For a

normal matrix W (such as the Langevin solution, WL),
∑

i
|λi|

2
= ‖W‖2F, i.e. this ratio is 100%.
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1 Lower bound on the maximum eigenvalue of the Langevin connectivity

matrix

Here we give an informal derivation of the lower bound on Re
(

λWL−I
max

)

found in Eq. 7 of the main

text. Let us recall that (WL − I) is real and symmetric, so its eigenvalues are all real, and since
WL − I = −σ2

ξΣ
−1 we can write1

λWL−I

max = −σ2
ξλ

Σ
−1

min = −
σ2
ξ

λΣmax

(1)

Now, again because of its symmetry, Σ is a normal matrix, and so it is similar to (i.e. equal to the
unitary transformation of) a diagonal matrix that contains its eigenvalues. Since unitary transforma-

tions preserve the Frobenius norm, we can write
∑

i,j Σ
2
ij =

∑

i

(

λΣi
)2

and since all the eigenvalues

of Σ are positive, we have N
(

λΣmax

)2 ≥ ∑

i

(

λΣi
)2

. Plugging this into Eq. 1, we arrive at a bound

that relates the maximum eigenvalue of (WL − I) to a basic summary statistics, the sum of all
(co)variances, of the posterior covariance matrix Σ:

λWL−I

max ≥ −σ2
ξ

√

N
∑

ij Σ
2
ij

(2)

In the N → ∞ limit, assuming that pairwise correlations do not vanish, the denominator is O(N2),

meaning that 0 > λWL−I
max ≥ −O(1/

√
N): the slowest eigenmode of WL becomes critically slow.

To make this bound more concrete, let us assume that Σii ≃ σ2
0 (all posterior variances are roughly

equal) and that the distribution of pairwise posterior correlations has zero mean and standard devia-
tion σr. We can then rewrite Eq. 2 as

λWL−I

max ≥ −(σξ/σ0)
2

√

1 +Nσ2
r

(3)

which is Eq. 7 of our main text.

1For a non-singular matrix M, the eigenvalues of M−1 are the inverses of those of M; and since Σ is a
positive definite covariance matrix, all its eigenvalues are positive, which yields Eq. 1.
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2 Minimization of the slowing cost ψslow

Let us recall the definition of the slowing cost for convenience:

ψslow(S) =
1

2τmN2

∫

∞

0

∥

∥

∥
Λ−

1

2K(S, τ)Λ−
1

2

∥

∥

∥

2

F
dτ (4)

where K(S, τ) ≡
〈

δr(t+ τ) δr(t)⊤
〉

t
.

From Ornstein-Uhlenbeck theory [1], we know that K(S, τ) obeys the following differential equa-
tion:

τm
dK(S, τ)

dτ
= [W(S)− I]K(S, τ) (5)

such that for τ ≥ 0, we have K(S, τ) = e[W(S)−I] τ/τm Σ. We may thus rewrite ψslow(S) as

ψslow(S) =
1

2N2
trace

[

V

(
∫

∞

0

eτ [W(S)−I]UU⊤eτ[W(S)⊤−I]dτ

)

V⊤

]

(6)

with the shorthand notation U ≡ ΣΛ−
1

2 and V ≡ Λ−
1

2 . Equation 6 is the canonical form used in
linear quadratic control theory [2] and affords the following gradient:

∂ψslow(S)

∂S
=

1

N2

[

(Σ−1PQ)⊤ − (Σ−1PQ)
]

(7)

Here P and Q are the unique solutions of a pair of Lyapunov equations,

(W − I)P+P(W − I)⊤ = −ΣΛ−1Σ (8)

(W − I)⊤Q+Q(W − I) = −Λ−1, (9)

which can be solved efficiently [3], e.g. using the Matlab function lyap. Note also that ψslow(S) =
trace(Λ−1/2PΛ−1/2)/2N2 [2].

TheL2-penalty term in the overal cost function (Eq. 13 of the main text) is more easily differentiated,
yielding the gradient

∂L(S)
∂S

=
1

N2

[

(Σ−1PQ)⊤ − (Σ−1PQ)
]

+
λL2

N2

[

SΣ−2 +Σ−2S
]

(10)

which is skew-symmetric, as it should.

3 Only Langevin sampling (LS) satisfies detailed balance (in our model class)

Consider a Markov chain {xt} with stationary distribution p(xt) and a probability of transitioning
from state xt into state xt+1 given by p(xt+1|xt). Detailed balance is satisfied if, and only if for
any pair of states (xt,xt+1), we have

p(xt+1|xt) p(xt) = p(xt|xt+1) p(xt+1) (11)

Equation 11 states that any state sequence xt → xt+1 should be visited as often as the reverse
sequence xt+1 → xt, that is, time is reversible. Taking the logarithm on both sides, we rewrite the
detailed balance condition as

log p(xt+1|xt) + log p(xt) = log p(xt|xt+1) + log p(xt+1) (12)

To see whether or not detailed balance holds in our samplers, we write the network dynamics (Eq. 3
in the main text) in discrete time, i.e. for ǫ→ 0 we have

xt+1 = xt + ǫAxt +
√
2ǫηt (13)

where A ≡ W − I = (−I + S)Σ−1 is the effective connectivity (it includes the leak term),
ηt ∼ N (0, I), and both τm and σξ have been set to unity without loss of generality.

Thus

log p(xt+1|xt) = −N
2
log(2πǫ)− ‖xt+1 − (I+ ǫA)xt‖2

4ǫ
(14)
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and, given that our samplers have the right stationary distribution N (0,Σ) (detailed balance is not
required to show this, see [1]),

log p(xt) = −N
2
log(2π)− 1

2
log |Σ| − 1

2
x⊤

t Σ
−1xt (15)

Therefore, detailed balance is satisfied if, and only if for any state pair (xt,xt+1) we have:

‖xt+1 − (I+ ǫA)xt‖2 + 2ǫx⊤

t Σ
−1xt = ‖xt − (I+ ǫA)xt+1‖2 + 2ǫx⊤

t+1Σ
−1xt+1 (16)

Keeping only first-order terms in ǫ, and inserting the parameterization A = (−I+S)Σ−1, we obtain
the following necessary and sufficient condition for reversibility:

2(xt+1 − xt)
⊤SΣ−1(xt+1 − xt) = 0 (17)

Clearly, if S = 0, the condition is satisfied, therefore detailed balance holds. Conversely, if detailed
balance holds, then Eq. 17 must hold for any pair (xt,xt+1), from which it is easy to see that SΣ−1

must be zero, and therefore S = 0 too. Therefore, only the Langevin solution (which corresponds
to S = 0) satisfies time reversibility.

4 LS is at the pessimum of the slowness cost function

Here we prove that LS corresponds to a pessimum of the slowness cost function ψslow used through-
out the paper to optimize for sampling speed. To do this, we show that the gradient ∂ψslow/∂S is
zero at S = 0.

Let us assume that S = 0. Then,
A = −σ2

ξΣ
−1 (18)

such that the two Lyapunov equations (Eqs. 8 and 9) of Sec. 2 become:

σ2
ξ

(

Σ−1P+PΣ−1
)

= ΣΛ−1Σ (19)

σ2
ξ

(

Σ−1Q+QΣ−1
)

= Λ−1 (20)

Now,

σ2
ξ

(

Σ−1(ΣQΣ) + (ΣQΣ)Σ−1
)

= σ2
ξ (QΣ+ΣQ) (21)

= σ2
ξΣ

(

Σ−1Q+QΣ−1
)

Σ (22)

= ΣΛ−1Σ (23)

(the last equality uses Eq. 20). Thus, ΣQΣ is a solution to Eq. 19, and since the solution is unique
because P is positive definite [2], we conclude that

P = ΣQΣ (24)

i.e
Σ−1P = QΣ (25)

Using this result in Eq. 7, together with the fact that P, Q and Σ are symmetric, we compute:

∂ψslow(S)

∂S
∝

(

Σ−1PQ
)⊤ −Σ−1PQ (26)

= QPΣ−1 −QΣQ (27)

= Q(Σ−1P)⊤ −QΣQ (28)

= Q(QΣ)⊤ −QΣQ (29)

= QΣQ−QΣQ (30)

= 0 (31)

At this stage, we have shown that S = 0 corresponds to a critical point of ψslow. The fact that small,
random (unstructured) perturbations of S around 0 only decrease ψslow (Fig. 3 of the main text)
suggest that LS is in fact (locally, but perhaps also globally) the slowest possible sampler for our
problem.
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5 Details of the balanced E/I network optimization

To build optimized networks that obey Dale’s law, we assume that there are Nexc. = N excitatory
neurons, where N is the dimension of the distribution we want to sample from, and Ninh. inhibitory
neurons whose activity distribution is irrelevant (i.e. we regard inhibitory neurons as auxiliary sam-
pling variables, in the spirit of Hamiltonian Monte Carlo methods [4]). In the main paper, N = 200
and NI = 100. Let M = Nexc. +Ninh. denote the total network size. The dynamics do not change,
i.e. we still have

dr =
dt

τm
[−r(t) +Wr(t) + Fh] + σξ

√

2

τm
dξ(t) (32)

The connectivity matrix W is now made of N positive columns followed by NI negative columns.
This makes it difficult to apply the approach of Sec. 5 of the main text, as picking an arbitrary skew-
symmetric matrix S in Eq. 11 (main text) will not yield the column sign structure of an E/I network in
general. Therefore, we no longer have a parametric form for the solution matrix manifold on which
to search for the fastest network. However, with a few simple variations, we can still formulate the
problem as one of unconstrained optimization, as explained now.

The first step is to enforce Dale’s law through the following re-parameterization of W:

Wij = (1− δij) sj expβij (33)

where sj is a fixed sign that depends only on presynaptic neuron j (sj = +1 for j ≤ N , −1
otherwise), and the βij’s are unconstrained free parameters. Note that we do not allow for autapses,
hence the (1− δij) term in Eq. 33). Second, since the target posterior distribution specifies only the
N×N upper-left quadrant Σ of the overall covariance matrix which we denote by Σtot, we are free
to optimize over the other quadrants. We parameterize Σtot by its Cholesky factor:

Σtot = LL⊤, L ≡
(

L11 0
L12 L22

)

(34)

where L11 is the Cholesky factor of the posterior covariance matrix Σ (i.e. Σ = L11L
⊤
11), and

the two matrices L12 and L22 are free parameters. Note that L12 is a full rectangular matrix of
size NI ×N , while L22 is lower-triangular with dimensions NI ×NI . Third, in order to force the
network to sample from the right multivariate Gaussian distribution, we incorporate the Lyapunov
equation (cf. Eq. 4 in the main text) as an additional constraint in our loss function. This additional
term reads:

ψsol. ≡
1

2M2

∥

∥(W − I)Σtot +Σtot(W − I)⊤ + 2σ2
ξI
∥

∥

2

F
(35)

When ψsol. is zero, the Lyapunov equation (Eq. 4 in the main text) is satisfied, and therefore the
stationary covariance matrix of the network dynamics matches Σtot. In particular, their upper-left
quadrant would then be equal, meaning that the excitatory sub-network would be sampling from the
right posterior.

Note that ψsol. depends on both the βij’s (through W) and the free covariance parameters L12 and
L22 (through Σtot). The corresponding gradients can be obtained after a bit of algebra, and read:

∂ψsol.

∂L
=

2

M2

[

(GA) + (GA)⊤
]

L (36)

∂ψsol.

∂W
=

2

M2
GΣtot (37)

where
G ≡ (W − I)Σtot +Σtot(W − I)⊤ + 2σ2

ξI (38)

Note that we are interested only in the lower-triangular part of Eq. 36. The application of the chain
rule to go from W to the βij’s in Eq. 37 is straightforward (it can be performed element-wise).

The total cost function we minimize is

L ≡ ψsol. + λslowψslow +
λL2

2M2
‖W‖2F (39)

where ψslow penalizes the magnitude of lagged auto- and cross-correlations over an infinite time
horizon, in the excitatory sub-network only. To give a formal definition of ψslow, let us use the
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notation Ã to denote the zeroing of all elements but those in the upper-left N ×N quadrant of any
M ×M matrix A. The modified slowness loss is then written as

ψslow(S) ≡
1

2τmN2

∫

∞

0

∥

∥

∥
Λ−

1

2 K̃(S, τ)Λ−
1

2

∥

∥

∥

2

F
dτ (40)

where Λ is a diagonal matrix that contains the diagonal of Σ in its upper-left quadrant and zeros
everywhere else. The kernel K is defined as in the main text, i.e.

K(S, τ) ≡ 〈r(t)r(t+ τ)⊤〉t (41)

= e(W−I)τ/τmΣtot (42)

(the second equality can be found in e.g. [1]). Observing that K̃(S, τ) = ĨK(S, τ)Ĩ, and making
the change of variable τ/τm → τ , we can rewrite the slowness cost as

ψslow(S) =
1

2N2
trace

[

V

(
∫

∞

0

eτ(W−I)UU⊤eτ(W−I)⊤dτ

)

V⊤

]

(43)

with

V ≡ Λ−
1

2 Ĩ = Λ̃−
1

2 (44)

U ≡ ΣĨΛ−
1

2 = ΣΛ̃−
1

2 (45)

As in the main text we have to solve two dual Lyapunov equations for matrices P and Q:

AP+PA⊤ = −ΣtotΛ̃
−1Σtot (46)

A⊤Q+QA = −Λ̃−1 (47)

Thus [2],

ψslow =
1

2N2
trace

(

Λ̃−
1

2PΛ̃−
1

2

)

(48)

and the gradient w.r.t. the synaptic weights is again given by

∂ψslow

∂W
=

QP

N2
(49)

The gradient w.r.t. the Cholesky factor L requires a bit more algebra, and reads

∂ψslow

∂L
= 2

[(

Λ̃−1ΣtotQ
)

+
(

Λ̃−1ΣtotQ
)]

L (50)

We used again the L-BFGS algorithm (from the NLopt library) to optimize L (Eq. 39), with param-
eters λL2

= λslow = 0.1.

6 Connection to Newton preconditioning

Given an arbitrary target distribution p(r) ∝ exp [−V (r)], LS can be more generally written as [5]

dr = −B∇rV (r(t))dt+
√
2Bdξ(t) (51)

where ξ is a unitary Wiener process and B is an arbitrary positive definite matrix (a ”precondition-
ing” matrix). Note that the noise must also be preconditioned.

Inspired by classical Newton methods for gradient-based optimization, which take into account the
curvature of the objective function, Martin et al. [5] advocate the use of the inverse Hessian as a
preconditioner, shown to yield substantial speed improvements in many cases. In our Gaussian case,
picking the inverse Hessian H−1 = −Σ of the log-posterior as a preconditioner gives exactly:

dr(t) = −r(t) +
√
2Σdξ(t) (52)

i.e. it pushes the target covariance in the noise term and removes all recurrent interactions (note that
we have assumed zero posterior mean without loss of generality).

Our optimized samplers are thus quite different from smartly preconditioned Langevin sampling, in
that they can still make use of independent noise sources.
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7 Why feed-forward networks are insufficient

In the main text, we have shown how recurrent neural networks can sample fast from multivari-
ate Gaussian distributions. Algorithmically, it is straightforward to draw independent samples from
such distributions, and indeed, the standard Cholesky sampling algorithm can be seen as a feed-
forward neural network in which the input layer is made of independent noisy neurons, and the
output layer (consisting of the neurons that represent the posterior) mixes those inputs, as well as
the external stimulus, linearly. However, this solution assumes that some neurons are stochastic and
uncorrelated, and their only role is generating noise for the rest of the brain, while others (those
representing the posterior in the output layer) respond deterministically to their inputs. We find this
dichotomy physiologically highly unrealistic. Moreover, a feedforward layout is inconsistent with
the ubiquitously recurrent nature of cortical connectivity, of which, in contrast, our networks make
optimal use to support the computation.

8 Application to a nonlinear, non-Gaussian system

A fundamental motivation for focusing on recurrent networks is the intuition that only such complex
architectures will be able to sample from non-Gaussian posterior distributions in which not only the
mean, but also higher-order moments might have non-trivial dependencies on the input. Although
the analytical results of the main text, in particular the gradient of the slowness cost function, are lim-
ited to linear networks, we have made preliminary explorations of nonlinear, non-Gaussian systems
through simulations.

Our starting point is a nonlinear, random network with stochastic dynamics of the form:

du =
dt

τm

[

−u(t) +W(0)r(t)
]

+ σξ

√

2

τm
dξ(t) with ri(t) = tanh[ui(t)] (53)

where W
(0)
ij ∼ N (0, R2/N) such that W(0) has a circular eigenvalue spectrum of radius R = 5.

We set the network size to N = 200. A sample activity trace from this nonlinear system, ri(t),
is shown in Fig. 1A (blue). Neurons tend to spend prolonged periods of time at either lower or
upper saturation of their nonlinear gain function (tanh), yielding an autocorrelation length about
3-4 times greater than the membrane time constant (Fig. 1B, blue). There are strong negative and
positive correlations in the joint activity of neuron pairs (Fig. 1C, x-axis).

We then asked if we could build a nonlinear network that would sample from (approximately) the
same distribution, but faster. To apply our linear framework, we first estimated the covariance ma-
trix Σu ≡ 〈u(t)u(t)⊤〉t on the basis of a 100 second-long simulation of the nonlinear stochastic
dynamics of Eq. 53. We then built an optimal linear network to sample from a normal distribution
with covariance Σu as described in the main text, and finally used the resulting connectivity matrix

W in place of W(0) in the dynamics of Eq. 53.

This procedure yielded a nonlinear network that turned out to sample from approximately the same
non-Gaussian multivariate distribution p(r) as the original nonlinear network. Indeed, individual
pairwise correlations 〈ri(t)rj(t)〉t approximated those in the original network to a good degree
(Fig. 1C), as did individual marginals of p(ri) (not shown). Importantly, sampling was several times
faster, as can be inferred from the sample activity trace of Fig. 1A (red) and as summarized in the
average autocorrelation of ri(t) shown in Fig. 1B (red). Note, that since the original nonlinear
network often operates close to saturation, and thus makes heavy use of its nonlinearities, it is not
at all trivial that our speed optimization based on a linear approximation work so well. In fact,
if, instead of the speed optimized nonnormal weight matrix, we use the corresponding Langevin
solution from the linearized dynamics, then the nonlinear version of the dynamics does not only
slow down but even fails to match the correct stationary distribution. This is because the Langevin
solution encodes the posterior distribution in the principal eigenvectors of the weight matrix, and
those are the directions along which saturation occurs the most.
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Figure 1: Speeding up sampling for a non-Gaussian distribution in a nonlinear system. (A) Sam-
ple activity traces for a single unit in the nonlinear, chaotic network (blue), and in the optimized
network (red). (B) Firing rate autocorrelation 〈ri(t)ri(t + kτm)〉t (with ri transformed to z-score)
averaged across neurons (flanking lines denote ± one std.), for the two networks. (C) Pairwise
activity correlations 〈ri(t)rj(t)〉t (with the rk’s transformed to z-scores) in the nonlinear, chaotic
network (x-axis) vs. those in the optimized network (y-axis).
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