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Abstract

A common problem in neuroscience is to elucidate the collective neural representa-
tions of behaviorally important variables such as head direction, spatial location,
upcoming movements, or mental spatial transformations. Often, these latent vari-
ables are internal constructs not directly accessible to the experimenter. Here,
we propose a new probabilistic latent variable model to simultaneously identify
the latent state and the way each neuron contributes to its representation in an
unsupervised way. In contrast to previous models which assume Euclidean latent
spaces, we embrace the fact that latent states often belong to symmetric manifolds
such as spheres, tori, or rotation groups of various dimensions. We therefore
propose the manifold Gaussian process latent variable model (mGPLVM), where
neural responses arise from (i) a shared latent variable living on a specific manifold,
and (ii) a set of non-parametric tuning curves determining how each neuron con-
tributes to the representation. Cross-validated comparisons of models with different
topologies can be used to distinguish between candidate manifolds, and variational
inference enables quantification of uncertainty. We demonstrate the validity of the
approach on several synthetic datasets, as well as on calcium recordings from the
ellipsoid body of Drosophila melanogaster and extracellular recordings from the
mouse anterodorsal thalamic nucleus. These circuits are both known to encode
head direction, and mGPLVM correctly recovers the ring topology expected from
neural populations representing a single angular variable.

1 Introduction

The brain uses large neural populations to represent low-dimensional quantities of behavioural
relevance such as location in physical or mental spaces, orientation of the body, or motor plans. It
is therefore common to project neural data into smaller latent spaces as a first step towards linking
neural activity to behaviour (Cunningham and Byron, 2014). This can be done using a variety of
linear methods such as PCA or factor analysis (Cunningham and Ghahramani, 2015), or non-linear
dimensionality reduction techniques such as tSNE (Maaten and Hinton, 2008). Many of these
methods are explicitly probabilistic, with notable examples including GPFA (Yu et al., 2009) and
LFADS (Pandarinath et al., 2018). However, all these models project data into Euclidean latent
spaces, thus failing to capture the inherent non-Euclidean nature of variables such as head direction
or rotational motor plans (Chaudhuri et al., 2019; Finkelstein et al., 2015; Seelig and Jayaraman,
2015; Wilson et al., 2018).
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Figure 1: Schematic illustration of the manifold Gaussian process latent variable model
(mGPLVM). In the generative model (left), neural activity arises from (i) M latent states {gj}
on a manifoldM, each corresponding to a different condition j (e.g. time or stimulus), and (ii) the
tuning curves of N neurons, modelled as Gaussian processes and sharing the same latent states {gj}
as inputs. Using variational inference, mGPLVM jointly infers the global latent states and the tuning
curve of each neuron on the manifold (right).

Most models in neuroscience justifiably assume that neurons are smoothly tuned (Stringer et al.,
2019). As an example, a population of neurons representing an angular variable θ would respond
similarly to some θ and to θ + ε (for small ε). While it is straigthforward to model such smoothness
by introducing smooth priors for response functions defined over R, the activity of neurons modelled
this way would exhibit a spurious discontinuity as the latent angle changes from 2π to 0 + ε. We see
that appropriately modelling smooth neuronal representations requires keeping the latent variables
of interest on their natural manifold (here, the circle), instead of an ad-hoc Euclidean space. While
periodic kernels have commonly been used to address such problems in GP regression (MacKay,
1998), topological structure has not been incorporated into GP-based latent variable models due to
the difficulty of doing inference in such spaces.

Here, we build on recent advances in non-Euclidean variational inference (Falorsi et al., 2019)
to develop the manifold Gaussian process latent variable model (mGPLVM), an extension of the
GPLVM framework (Lawrence, 2005; Titsias and Lawrence, 2010; Wu et al., 2018, 2017) to non-
Euclidean latent spaces including tori, spheres and SO(3) (Figure 1). mGPLVM jointly learns the
fluctuations of an underlying latent variable g and a probabilistic “tuning curve” p(fi|g) for each
neuron i. The model therefore provides a fully unsupervised way of querying how the brain represents
its surroundings and a readout of the relevant latent quantities. Importantly, the probabilistic nature of
the model enables principled model selection between candidate manifolds. We provide a framework
for scalable inference and validate the model on both synthetic and experimental datasets.

2 Manifold Gaussian process latent variable model

The main contribution of this paper is mGPLVM, a Gaussian process latent variable model (Titsias
and Lawrence, 2010; Wu et al., 2018) defined for non-Euclidean latent spaces. We first present
the generative model (Section 2.1), then explain how we perform approximate inference using
reparameterizations on Lie groups (Falorsi et al., 2019; Section 2.2). Lie groups include Euclidean
vector spaces Rn as well as other manifolds of interests to neuroscience such as tori Tn (Chaudhuri
et al., 2019; Rubin et al., 2019) and the special orthogonal group SO(3) (Finkelstein et al., 2015;
Wilson et al., 2018; extensions to non-Lie groups are discussed in Appendix D). We then provide
specific forms for variational densities and kernels on tori, spheres, and SO(3) (Section 2.3). Finally
we validate the method on both synthetic data (Section 3.1), calcium recordings from the fruit fly head
direction system (Section 3.2), and extracellular recordings from the mouse anterodorsal thalamic
nucleus (Appendix A).

2.1 Generative model

We use xij to denote the individual elements of a matrix X . Let Y ∈ RN×M be the activity of N
neurons recorded in each of M conditions. Examples of “conditions” include time within a trial,
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stimulus identity, or motor output. We assume that all neuronal responses collectively encode a
shared, condition-specific latent variable gj ∈M, whereM is some manifold. We further assume
that each neuron i is tuned to the latent state g with a “tuning curve” fi(g), describing its average
response conditioned on g. Rather than assuming a specific parametric form for these tuning curves,
we place a Gaussian process prior on fi(·) to capture the heterogeneity widely observed in biological
systems (Churchland and Shenoy, 2007; Hardcastle et al., 2017). The model is depicted in Figure 1
and can be formally described as:

gj ∼ pM(g) (prior over latents) (1)

fi ∼ GP(0, kMi (·, ·)) (prior over tuning curves) (2)

yij |gj ∼ N (fi(gj), σ
2
i ) (noise model) (3)

In Equation 1, we use a uniform prior pM(g) inversely proportional to the volume of the manifold
for bounded manifolds (Appendix B), and a Gaussian prior on Euclidean spaces to set a basic
lengthscale. In Equation 2, kMi (·, ·) :M×M→ R is a covariance function defined on manifoldM
– manifold-specific details are discussed in Section 2.3. In the special case whereM is a Euclidean
space, this model is equivalent to the standard Bayesian GPLVM (Titsias and Lawrence, 2010). While
Equation 3 assumes independent noise across neurons, noise correlations can also be introduced as in
(Wu et al., 2018) and Poisson noise as in (Wu et al., 2017).

This probabilistic model can be fitted by maximizing the log marginal likelihood

log p(Y ) = log

∫
p(Y |{fi}, {gj}) p({fi}) pM({gj}) d{fi}d{gj}. (4)

Following optimization, we can query both the posterior over latent states p({gj}|Y ) and the posterior
predictive distribution p(Y ?|G?,Y ) at a set of query states G?. While it is possible to marginalise
out fi when the states {gj} are known, further marginalising out {gj} is intractable and maximizing
Equation 4 requires approximate inference.

2.2 Learning and inference

To maximize log p(Y ) in Equation 4, we use variational inference as previously proposed for
GPLVMs (Titsias and Lawrence, 2010). The true posterior over the latent states, p({gj}|Y), is
approximated by a variational distributionQθ({gj}) with parameters θ that are optimized to minimize
the KL divergence between Qθ({gj}) and p({gj}|Y ). This is equivalent to maximizing the evidence
lower bound (ELBO) on the log marginal likelihood:

L(θ) = H(Qθ) + EQθ [log pM({gj})] + EQθ [log p(Y |{gj})]. (5)
Here, EQθ [·] indicates averaging over the variational distribution and H(Qθ) is its entropy. For
simplicity, and because our model does not specify a priori statistical dependencies between the
individual elements of {gj}, we choose a variational distribution Qθ that factorizes over conditions:

Qθ({gj}) =

M∏
j=1

qθj (gj). (6)

In the Euclidean case, the entropy and expectation terms in Equation 5 can be calculated analytically
for some kernels (Titsias and Lawrence, 2010), and otherwise using the reparameterization trick
(Kingma and Welling, 2014; Rezende et al., 2014). Briefly, the reparameterization trick involves first
sampling from a fixed, easy-to-sample distribution (e.g. a normal distribution with zero mean and
unit variance), and applying a series of differentiable transformations to obtain samples from Qθ. We
can then use these samples to estimate the entropy term and expectations in Equation 5.

For non-Euclidean manifolds, inference in mGPLVMs poses two major problems. Firstly, we can no
longer calculate the ELBO analytically nor evaluate it using the standard reparameterization trick.
Secondly, evaluating the Gaussian process log marginal likelihood log p(Y |{gj}) exactly becomes
computationally too expensive for large datasets. We address these issues in the following.

2.2.1 Reparameterizing distributions on Lie groups

To estimate and optimize the ELBO in Equation 5 when Qθ is defined on a non-Euclidean manifold,
we use Falorsi et al.’s ReLie framework, an extension of the standard reparameterization trick to
variational distributions defined on Lie groups.
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Sampling from Qθ Since we assume that Qθ factorizes (Equation 6), sampling from Qθ is per-
formed by independently sampling from each qθj . We start from a differentiable base distribution
rθj (x) in Rn. Note that Rn is isomorphic to the tangent space at the identity element of the group
G, known as the Lie algebra. We can thus define a ‘capitalized’ exponential map ExpG : Rn → G,
which maps elements of Rn to elements in G (Sola et al., 2018; Appendix C). Importantly, ExpG
maps a distribution centered at zero in Rn to a distribution q̃θj in the group centered at the identity
element. To obtain samples from a distribution qθj centered at an arbitrary gµj in the group, we can
simply apply the group multiplication with gµj to samples from q̃θj . Therefore, obtaining a sample gj
from qθj involves the following steps: (i) sample from rθj (x), (ii) apply ExpG to obtain a sample g̃j
from q̃θj , and (iii) apply the group multiplication gj = gµj g̃j .

Estimating the entropy H(Qθ) Since H(qθj ) = H(q̃θj ) (Falorsi et al., 2019), we use K inde-
pendent Monte Carlo samples from Q̃θ(·) =

∏M
j=1 q̃θj (·) to calculate

H(Qθ) ≈ −
1

K

K∑
k=1

M∑
j=1

log q̃θj (g̃jk), (7)

where g̃jk = ExpGxjk and {xjk ∼ rθj (x)}Kk=1.

Evaluating the density q̃θ To evaluate log q̃θj (ExpGxjk), we use the result from Falorsi et al.
(2019) that

q̃θ(g̃) =
∑

x∈Rn : ExpG(x)=g̃

rθ(x)|J(x)|−1 (8)

where J(x) is the Jacobian of ExpG at x. Thus, q̃θ(g̃) is the sum of the Jacobian-weighted densities
rθ(x) in Rn at all those points that are mapped to g̃ through ExpG This is an infinite but converging
sum, and following Falorsi et al. (2019) we approximate it by its first few dominant terms (Appendix I).

Note that ExpG(·) and the group multiplication by gµ are both differentiable operations. Therefore,
as long as we choose a differentiable base distribution rθ(x), we can perform end-to-end optimization
of the ELBO. In this work we choose the reference distribution to be a multivariate normal rθj (x) =
N (x; 0,Σj) for each qθj . We variationally optimize both {Σj} and the mean parameters {gµj } for
all j, and together these define the variational distribution.

2.2.2 Sparse GP approximation

To efficiently evaluate the EQθ [log p(Y |{gj})] term in the ELBO for large datasets, we use the
variational sparse GP approximation (Titsias, 2009) which has previously been applied to Euclidean
GPLVMs (Titsias and Lawrence, 2010). Specifically, we introduce a set of m inducing points Zi for
each neuron i, and use a lower bound on the GP log marginal likelihood:

log p(yi|{gj}) ≥ −
1

2
yTi (Qi + σ2

i I)−1yi −
1

2
log |Qi + σ2

i I| −
1

2σ2
Tr(Ki −Qi) + const.︸ ︷︷ ︸

log p̃(yi|{gj})

(9)

with Qi = K{gj}ZiK
−1
ZiZiKZi{gj} (10)

where KAB denotes the Gram matrix associated with any two input sets A and B. Note that the
latents {gj} are shared across all neurons. In this work we optimize the inducing points on G directly,
but they could equivalently be optimized in Rn and projected onto G via ExpG.

Using the sparse GP framework, the cost of computing the GP likelihood reduces to O(Mm2) for
each neuron and Monte Carlo sample. This leads to an overall complexity of O(KNMm2) for
approximating EQθ [log p(Y |{gj})] with K Monte Carlo samples, N neurons, M conditions and m
inducing points (see Appendix I for further details on complexity and implementation).

2.2.3 Optimization

We are now equipped to optimize the ELBO defined in Equation 5 using Monte Carlo samples
drawn from a variational distribution Qθ defined on a Lie group G. To train the model, we use
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Adam (Kingma and Ba, 2014) to perform stochastic gradient descent on the following loss function:

L(θ) =
1

K

K∑
k=1

 M∑
j=1

(
log pM(gjk)− log q̃θj (g̃jk)

)
−

N∑
i

log p̃(yi|{gjk})

 (11)

where a set of K Monte-Carlo samples {g̃jk}Kk=1 is drawn at each iteration from {q̃θj} as described
in Section 2.2.1. In Equation 11, gjk = gµj g̃jk, where gµj is a group element that is optimized together
with all other model parameters. Finally, log p̃(yi|{gj}) is the lower bound defined in Equation 9 and
pM(gjk) is the prior described in Section 2.1. The inner sums run over conditions j and neurons i.

2.2.4 Posterior over tuning curves

We approximate the posterior predictive distribution over tuning curves by sampling from the
(approximate) posterior over latents. Specifically, for a given neuron i and a set of query states G?,
the posterior predictive over f?i is approximated by:

p(f?i |Y ,G?) =
1

K

K∑
k=1

p(f?i |G?, {Gk,Y }) (12)

where each Gk is a set of M latent states (one for each condition in Y ) independently drawn from
the variational posterior Qθ(·). In Equation 12, each term in the sum is a standard Gaussian process
posterior (Rasmussen and Williams, 2006), which we approximate as described above (Section 2.2.2;
Appendix E; Titsias, 2009).

2.3 Applying mGPLVM to tori, spheres and SO(3)

At this stage, we have yet to define the manifold-specific GP kernels kM described in Section 2.1.
These kernels ought to capture the topology of the latent space and express our prior assumptions
that the neuronal tuning curves, defined on the manifold, have certain properties such as smoothness.
Here we take inspiration from the common squared exponential covariance function defined over
Euclidean spaces and introduce analogous kernels on tori, spheres, and SO(3). This leads to the
following general form:

kM(g, g′) = α2 exp

(
−dM(g, g′)

2`2

)
g, g′ ∈M (13)

where α2 is a variance parameter, ` is a characteristic lengthscale, and dM(g, g′) is a manifold-
specific distance function. While squared geodesic distances might be intuitive choices for d(·, ·) in
Equation 13, they result in positive semi-definite (PSD) kernels only for Euclidean latent spaces (Fer-
agen et al., 2015; Jayasumana et al., 2015). Therefore, we build distance functions that automatically
lead to valid covariance functions by observing that (i) dot product kernels are PSD, and (ii) the
exponential of a PSD kernel is also PSD. Specifically, we use the following manifold-specific dot
product-based distances:

dRn(g, g′) = ||g − g′||22 g ∈ Rn (14)

dSn(g, g′) = 2(1− g · g′) g ∈ {x ∈ Rn+1; ‖x‖ = 1} (15)

dTn(g, g′) = 2
∑
k (1− gk · g′k) g ∈ {(g1, · · · , gn); ∀k : gk ∈ R2, ‖gk‖ = 1} (16)

dSO(3)(g, g
′) = 4

[
1− (g · g′)2

]
g ∈ {x ∈ R4; ‖x‖ = 1} (17)

where we have slightly abused notation by directly using “g” to denote a convenient parameterisation
of the group elements which we define on the right of each equation. To build intuition, we note
that the distance metric on the torus gives rise to a multivariate von Mises function; the distance
metric on the sphere leads to an analogous von Mises Fisher function; and the distance metric on
SO(3) is 2(1− cosϕrot) where ϕrot is the angle of rotation required to transform g into g′. Notably,
all these distance functions reduce to the Euclidean squared exponential kernel in the small angle
limit. Laplacian (Feragen et al., 2015) and Matérn (Borovitskiy et al., 2020) kernels have previously
been proposed for modelling data on Riemannian manifolds, and these can also be incorporated in
mGPLVM.
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Figure 2: Applying mGPLVM to syn-
thetic data on the ring T 1. Top left: neu-
ral activity of 100 neurons at 100 differ-
ent conditions (here, time bins). Bottom:
timecourse of the latent states (left) and
tuning curves for 12 representative neurons
(right). Green: ground truth; Black: poste-
rior mean; Grey shaded regions: ±2 pos-
terior s.t.d. Top right: data replotted from
the top left panel, with neurons reordered
according to their preferred angles as de-
termined by the inferred tuning curves.

Finally, we provide expressions for the variational densities (Equation 8) defined on tori, S3 and
SO(3):

q̃θ(ExpTnx) =
∑
k∈Zn

rθ(x + 2πk), (18)

q̃θ(ExpSO(3)x) =
∑
k∈Z

[
rθ(x + πkx̂)

2‖x + πkx̂‖2

1− cos (2‖x + πkx̂‖)

]
, (19)

q̃θ(ExpS3x) =
∑
k∈Z

[
rθ(x + 2πkx̂)

2‖x + 2πkx̂‖2

1− cos (2‖x + 2πkx̂‖)

]
, (20)

where x̂ = x/‖x‖. Further details and the corresponding exponential maps are given in Appendix C.
Since spheres that are not S1 or S3 are not Lie groups, ReLie does not provide a general framework
for mGPLVM on these manifolds which we therefore treat separately in Appendix D.

3 Experiments and results

In this section, we start by demonstrating the ability of mGPLVM to correctly infer latent states and
tuning curves in non-Euclidean spaces using synthetic data generated on T 1, T 2 and SO(3). We
also verify that cross-validated model comparison correctly recovers the topology of the underlying
latent space, suggesting that mGPLVM can be used for model selection given a set of candidate
manifolds. Finally, we apply mGPLVM to a biological dataset to show that it is robust to the noise
and heterogeneity characteristic of experimental recordings.

3.1 Synthetic data

To generate synthetic data Y, we specify a target manifoldM, draw a set of M latent states {gj} on
M, and assign a tuning curve to each neuron i of the form

fi(g) = a2i exp

(
−
d2geo(g, gpref

i )

2b2i

)
+ ci, (21)

yij |gj ∼ N (fi(gj), σ
2
i ) (22)

with random parameters ai, bi and ci. Thus, the activity of each neuron is a noisy bell-shaped function
of the geodesic distance onM between the momentary latent state gj and the neuron’s preferred state
gpref
i (sampled uniformly). While this choice of tuning curves is inspired by the common ‘Gaussian

bump’ model of neural tuning, we emphasize that the non-parametric prior over fi in mGPLVM
can discover any smooth tuning curve on the manifold, not just Gaussian bumps. For computational
simplicity, here we constrain the mGPLVM parameters αi, `i and σi to be identical across neurons.
Note that we can only recover the latent space up to symmetries which preserve pairwise distances.
In all figures, we have therefore aligned model predictions and ground truth for ease of visualization
(Appendix F).
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Figure 3: Validating mGPLVM on synthetic data. (a-c) Torus dataset. (a) True latent states
{gj ∈ T 2} (dots) and posterior latent means {gµj } (crosses). The color scheme is chosen to be smooth
for the true latents. (b) Posterior tuning curves for two example neurons. Top: tuning curves on the
tori. Bottom: projections onto the periodic [0; 2π] plane. Black circles indicate locations and widths
of the true tuning curves. (c) Mean squared cross-validated prediction error (left) and negative log
likelihood (right) when fitting T 2 and R2 to data generated on T 2. Dashed lines connect datapoints
for the same synthetic dataset. (d-f) SO(3) dataset. (d) Axis of the rotation represented by the true
latent states {gj ∈ SO(3)} (dots) and the posterior latent means {gµj } (crosses) projected onto the
(ϕ, θ)-plane. (e) Magnitude of the rotations represented by {gj} and {gµj }. (f) Same as (c), now
comparing SO(3) to R3. (g) Test log likelihood ratio for 10 synthetic datasets on T 2, SO(3), & S3,
with mGPLVM fitted on each manifold (x-axis). Solid lines indicate mean across datasets.

We first generated data on the ring (T 1, Figure 2, top left), letting the true latent state be a continuous
random walk across conditions for ease of visualization. We then fitted T 1-mGPLVM to the data and
found that it correctly discovered the true latent states g as well as the ground truth tuning curves
(Figure 2, bottom right). Reordering the neurons according to their preferred angles further exposed
the population encoding of the angle (Figure 2, top right).

Next, we expanded the latent space to two dimensions with data now populating a 2-torus (T 2).
Despite the non-trivial topology of this space, T 2-mGPLVM provided accurate inference of both latent
states (Figure 3a) and tuning curves (Figure 3b). To show that mGPLVM can be used to distinguish
between candidate topologies, we compared T 2-mGPLVM to a standard Euclidean GPLVM in R2

on the basis of both cross-validated prediction errors and importance-weighted marginal likelihood
estimates (Burda et al., 2015). We simulated 10 different toroidal datasets; for each, we used half
the conditions to fit the GP hyperparameters, and half the neurons to predict the latent states for
the conditions not used to fit the GP parameters. Finally, we used the inferred GP parameters and
latent states to predict the activity of the held-out neurons at the held-out conditions. As expected,
the predictions of the toroidal model outperformed those of the standard Euclidean GPLVM which
cannot capture the periodic boundary conditions of the torus (Figure 3c).

Beyond toroidal spaces, SO(3) is of particular interest for the study of neural systems encoding ‘yaw,
pitch and roll’ in a variety of 3D rotational contexts (Finkelstein et al., 2015; Shepard and Metzler,
1971; Wilson et al., 2018). We therefore fitted an SO(3)-mGPLVM to synthetic data generated on
SO(3) and found that it rendered a faithful representation of the latent space and outperformed a
Euclidean GPLVM on predictions (Figure 3d-f). Finally we show that mGPLVM can also be used to
select between multiple non-Euclidean topologies. We generated 10 datasets on each of T 2, SO(3)
and S3 and compared cross-validated log likelihoods for T 2-, SO(3)- and S3-mGPLVM, noting
that p(M|Y ) ∝ p(Y |M) under a uniform prior over manifoldsM. Here we found that the correct
latent manifold was consistently the most likely for all 30 datasets (Figure 3g). In summary, these
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Figure 4: The Drosophila head
direction circuit. (a) Input data
overlaid with the posterior varia-
tional distribution over latent states
of a T 1-mGPLVM. (b) Mean cross-
validated prediction error (left) and
negative log likelihood (right) for
models fitted on T 1 and R1. Each
datapoint corresponds to a differ-
ent partition of the timepoints into
a training set and a test set. (c-
d) Posterior tuning curves for eight
example neurons in T 1 (c) and R1

(d). Color encodes the position
of the maximum of each tuning
curve. Shadings in (a,c,d) indicate
±2 s.t.d.

results show robust performance of mGPLVM across various manifolds of interest in neuroscience
and beyond, as well as a quantitative advantage over Euclidean GPLVMs which ignore the underlying
topology of the latent space.

3.2 The Drosophila head direction circuit

Finally we applied mGPLVM to an experimental dataset to show that it is robust to biological and
measurement noise. Here, we used calcium imaging data recorded from the ellipsoid body (EB) of
Drosophila melanogaster (Turner-Evans, 2020; Turner-Evans et al., 2020), where the so-called E-PG
neurons have recently been shown to encode head direction (Seelig and Jayaraman, 2015). The EB is
divided into 16 ‘wedges’, each containing 2-3 E-PG neurons that are not distinguishable on the basis
of calcium imaging data, and we therefore treat each wedge as one ‘neuron’. Due to the physical
shape of the EB, neurons come ‘pre-ordered’ since their joint activity resembles a bump rotating on
a ring (Figure 4a, analogous to Figure 2, “ordered data”). While the EB’s apparent ring topology
obviates the need for mGPLVM as an explorative tool for uncovering manifold representations, we
emphasize that head direction circuits in higher organisms are not so obviously structured (Chaudhuri
et al. (2019); Appendix A) – in fact, some brain areas such as the entorhinal cortex even embed
concurrent representations of multiple spaces (Constantinescu et al., 2016; Hafting et al., 2005).

We fitted the full mGPLVM with a separate GP for each neuron and found that T 1-mGPLVM
performed better than R1-mGPLVM on both cross-validated prediction errors and log marginal
likelihoods (Figure 4b). The model recovered latent angles that faithfully captured the visible rotation
of the activity bump around the EB, with larger uncertainty during periods where the neurons were
less active (Figure 4a, orange). When querying the posterior tuning curves from a fit in R1, these
were found to suffer from spurious boundary conditions with inflated uncertainty at the edges of
the latent representation – regions where R1-mGPLVM effectively has less data than T 1-mGPLVM
since R1 does not wrap around. In comparison, the tuning curves were more uniform across angles in
T 1 which correctly captures the continuity of the underlying manifold. In Appendix A, we describe
similar results with mGPLVM applied to a dataset from the mouse head-direction circuit with more
heterogeneous neuronal tuning and no obvious anatomical organization (Peyrache et al., 2015).

4 Discussion and future work

Conclusion We have presented an extension of the popular GPLVM model to incorporate non-
Euclidean latent spaces. This is achieved by combining a Bayesian GPLVM with recently developed
methods for approximate inference in non-Euclidean spaces and a new family of manifold-specific
kernels. Inference is performed using variational sparse GPs for computational tractability with
inducing points optimized directly on the manifold. We demonstrated that mGPLVM correctly infers
the latent states and GP parameters for synthetic data of various dimensions and topologies, and that
cross-validated model comparisons can recover the correct topology of the space. Finally, we showed
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how mGPLVM can be used to infer latent topologies and representations in biological circuits from
calcium imaging data. We expect mGPLVM to be particularly valuable to the neuroscience community
because many quantities encoded in the brain naturally live in non-Euclidean spaces (Chaudhuri et al.,
2019; Finkelstein et al., 2015; Wilson et al., 2018).

Related work GP-based latent variable models with periodicity in the latent space have previously
been used for motion capture, tracking and animation (Elgammal and Lee, 2008; Urtasun et al., 2008).
However, these approaches are not easily generalized to other non-Euclidean topologies and do not
provide a tractable marginal likelihood which forms the basis of our Bayesian model comparisons.
Additionally, methods have been developed for analysing the geometry of the latent space of GPLVMs
(Tosi et al., 2014) and other latent variable models (Arvanitidis et al., 2017) after initially learning the
models with a Euclidean latent. These approaches confer a degree of interpretability to the learned
latent space but do not explicitly incorporate priors and topological constraints on the manifold during
learning. Furthermore, GPs and GPLVMs with non-Euclidean outputs have been developed (Mallasto
and Feragen, 2018; Mallasto et al., 2019; Navarro et al., 2017). These approaches are orthogonal
to mGPLVM where the latent GP inputs, not outputs, live on a non-Euclidean manifold. mGPLVM
can potentially be combined with these approaches to model non-Euclidean observations, and to
incorporate more expressive GP priors over the latent states than the independent prior we have used
here.

Finally, several methods for inference in non-Euclidean spaces have been developed in the machine
learning literature. These have centered around methods based on VAEs (Davidson et al., 2018;
Rey et al., 2019; Wang and Wang, 2019), normalizing flows (Rezende et al., 2020), and neural
ODEs (Falorsi and Forré, 2020; Lou et al., 2020; Mathieu and Nickel, 2020). While non-Euclidean
VAEs are useful for amortized inference, they constrain f(g) more than a GP does and do not naturally
allow expression of a prior over its smoothness. Normalizing flows and neural ODEs can potentially
be combined with mGPLVM to increase the expressiveness of the variational distributions (Falorsi
et al., 2019). This would allow us to model complex distributions over latents, such as the multimodal
distributions that naturally arise in ambiguous environments with symmetries (Jacob et al., 2017).

mGPLVM extensions Here, we have assumed statistical independence across latent states, but
prior dependencies could be introduced to incorporate e.g. temporal smoothness by placing a GP
prior on the latents as in GPFA (Yu et al., 2009). To capture more statistical structure in the latents,
richer variational approximations of the posterior could be learned by using normalizing flows on
the base distribution (rθ). It would also be interesting to exploit automatic relevance determination
(ARD, Neal, 2012) in mGPLVM to automatically select the latent manifold dimension. We explored
this approach by fitting a T 2-mGPLVM to the data from Figure 2 with separate lengthscales for the
two dimensions, where we found that T 2 shrunk to T 1, the true underlying manifold (Appendix G).

Furthermore, the mGPLVM framework can be extended to direct products of manifolds, enabling
the study of brain areas encoding non-Euclidean variables such as head direction jointly with global
modulation parameters such as attention or velocity. As an example, fitting a (T 1 × R1)-mGPLVM
to the Drosophila data captures both the angular heading in the T 1 dimension as well as a variable
correlated with global activity in the R1 dimension (Appendix H).

Future applications mGPLVM not only infers the most likely latent states but also estimates
the associated uncertainty, which can be used as a proxy for the degree of momentary coherence
expressed in neural representations. It would be interesting to compare such posterior uncertainties
and tuning properties in animals across brain states. For example, uncertainty estimates could be
compared across sleep and wakefulness or environments with reliable and noisy spatial cues.

In the motor domain, mGPLVM can help elucidate the neural encoding of motor plans for movements
naturally specified in rotational spaces. Examples include 3-dimensional head rotations represented in
the rodent superior colliculus (Masullo et al., 2019; Wilson et al., 2018) as well as analogous circuits
in primates. Finally, it will be interesting to apply mGPLVM to artificial agents trained on tasks that
require them to form internal representations of non-Euclidean environmental variables (Banino et al.,
2018). Our framework could be used to dissect such representations, adding to a growing toolbox for
the analysis of artificial neural networks (Sussillo and Barak, 2013).
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Broader Impact

There are two broad fields which we expect might be influenced by our work. From a technical
point of view, mGPLVM extends a probabilistic machine learning toolbox which has downstream
applications in fields ranging from speech recognition and image classification to personalized
medicine (Ghahramani, 2015). However, this work is primarily geared towards neuroscience, and
that is where we expect it to have the largest impact. One tangible application of methods for
probabilistic inference in neural populations is in the fields of brain-machine interfaces (BMI) and
neuroprosthetics – methods which allow the brain to control external devices directly and without
intermediate motor output. The control of such actuated systems might be more effectively performed
by representing high-level plans – such as 3D motor actions, navigational plans or rotation of objects
– directly on the relevant non-Euclidean manifolds. We therefore expect that new inference methods
in such spaces might accelerate the development of BMIs, fostering a range of medical applications,
from amputees using neuroprosthetic devices as substitutes for missing limbs to surgeons operating
remote high-precision surgical devices using neural activity directly. These applications come with
various ethical and societal concerns; in particular, the ability to automatically extract internal brain
representations comes with concerns of privacy. Fortunately, many of these challenges are already
being considered by the community and actively explored in the field of bioethics (Clausen, 2009),
and we hope that such ethical considerations will continue to shape the way we do research in the
future.
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Appendix – Manifold GPLVMs for
discovering non-Euclidean latent structure
in neural data
A The mouse head direction circuit

Figure 5: The mouse head direc-
tion circuit. (a) Population activ-
ity recorded from mouse ADn dur-
ing foraging. (b) Variational mean
inferred by T 1-mGPLVM plotted
against the true mouse head direc-
tion. (c) Kernel length scales for
the 29 neurons recorded. Dashed
line: `2 = 4 (maximum d in the
T 1-kernel). Insets: example neu-
rons with low and high `. (d) Tun-
ing curves for three example neu-
rons inferred during wake (black)
and REM sleep (red).

To highlight the importance of unsupervised non-Euclidean learning methods in neuroscience and to
illustrate the interpretability of the learned GP parameters, we consider a dataset from Peyrache et al.
(2015b) recorded from the mouse anterodorsal thalamic nucleus (ADn; Figure 5a). This data has
also been analyzed in Peyrache et al. (2015a), Chaudhuri et al. (2019) and Rubin et al. (2019). We
consider the same example session shown in Figure 2 of Chaudhuri et al. (2019) (Mouse 28, session
140313) and bin spike counts in 500 ms time bins for analysis with mGPLVM. When comparing cross-
validated log likelihoods for T 1- and R1-mGPLVM fitted to the data, T 1 consistently outperformed
R1 with a log likelihood ratio of 127± 30 (mean ± sem) across 10 partitions of the data.

Fitting T 1-mGPLVM to the binned spike data, we found that the inferred latent state was highly
correlated with the true head direction (Figure 5b). However, in contrast to the data considered in
Section 3.1 and Section 3.2, this mouse dataset contains neurons with more heterogeneous baseline
activities and tuning properties. This is reflected in the learned GP parameters which converge
to small kernel length scales for neurons that contribute to the heading representation (Figure 5c,
‘tuned’) and large length scales for those that do not (Figure 5c, ‘not tuned’). Finally, since mGPLVM
does not require knowledge of behaviour, we also fitted mGPLVM to data recorded from the same
neurons during a period of rapid eye movement (REM) sleep. Here we found that the representation
of subconscious heading during REM sleep was similar to the representation of heading when the
animal was awake after matching the offset between the two sets of tuning curves (Figure 5d), similar
to results by Peyrache et al. (2015a). However, their analyses relied on recordings from two separate
brain regions to align the activity from neurons in ADn to a subconscious head direction decoded
from the postsubiculum and vice versa. In contrast, mGPLVM allows for fully unsupervised Bayesian
analyses across both wake and sleep using recordings from a single brain area.

B Priors on manifolds

For all manifolds, we use priors that factorize over conditions, pM({gj}) =
∏
j p
M(gj). As

described in Section 2.1, we use a Gaussian prior pR
n

(g) = N (g; 0, In) over latent states in Rn, and
uniform priors for the spheres, tori, and SO(3). These uniform priors have a density which is the
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inverse volume of the manifold:

pS
n

(g) =

 2π
n+1
2

Γ(n+1
2 )

−1 (23)

pT
n

(g) = [2π]−n (24)

pSO(3)(g) =

 2π
4
2

2Γ( 4
2 )

−1 . (25)

Note that the volume of Sn is the surface area of the n-sphere, and the volume of SO(3) is half the
volume of S3.

C Lie groups and their exponential maps

For simplicity of exposition, we have skimmed over the details of how the ‘capitalized’ Exponential
map ExpG : Rn → G is defined in Section 2.2.1, particularly in relation to the group’s Lie algebra
g. Here we make this connection more explicit. As described in the main text, the Lie algebra g
of a group G is a vector space tangent to G at its identity element. The exponential map expG :
g → G maps elements from the Lie algebra to the group, and is conceptually distinct from the
“capitalised” Exponential map defined in Section 2.2.1 which maps from Rn to G. However, because
the Lie algebra is isomorphic to Rn, we have found it convenient in both our exposition and our
implementation to work directly with the pair (Rn,ExpG), instead of (g, expG). To expand on
the connection between the two, note that we can define as in Sola et al. (2018) the isomorphism
Hat : Rn → g, which maps every element in Rn to a distinct element in the Lie algebra g. Therefore,
ExpG : Rn → G is in fact the composition expG ◦Hat.

Manifold-specific parameterizations

Here we provide some further justification for the forms of q̃θ(g̃) provided in Equations 18 and 19 as
well as the exponential maps which are used to derive these densities and are needed for optimization
in Equation 11. For both Tn and SO(3), we use Equation 8 from Falorsi et al. (2019), which we
repeat here for reference:

q̃θ(g̃) =
∑

x∈Rn : ExpG(x)=g̃

rθ(x)|J(x)|−1. (26)

In what follows, we will use g to indicate a vector representation of group element g to avoid conflicts
of notation.

Note that the expressions in this section largely follow Falorsi et al. (2019), but we re-write them in a
different basis for ease of computational implementation.

C.1 Tn

The n-Torus Tn is the direct product of n circles, such that we can parameterize members of this
group as g ∈ Rn whose elements are all angles between 0 and 2π. Note that this is equivalent to the
parameterization in Equation 16 except that here we denote an element on the circle by its angle,
while in Equation 16 we denote it by a unit 2-vector for notational consistency with the other kernels.
Because 1-dimensional rotations are commutative, the parameterization of the torus as a list of angles
allows us to perform group operations by simple addition modulo 2π. We therefore slightly abuse
notation and write the exponential map ExpTn : Rn → Tn as an element-wise modulo operation:

ExpTnx = x mod 2π. (27)

Equation 27 has inverse Jacobian |J(x)|−1 = 1. Moreover, since ExpTn(x) = ExpTn(x + 2πk)
for any integer vector k ∈ Zn, the change-of-variable formula in Equation 26 yields the following
density on Tn:

q̃θ(ExpTnx) =
∑
k∈Zn

rθ(x + 2πk). (28)
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For ease of implementation it is also convenient to rewrite the kernel distance function Equation 16
as

dTn(g, g′) = 2 · 1n · (1− cos(g − g′)) (29)

where 1n is the n-vector full of ones, and cos(·) is applied element-wise to g − g′.

C.2 SO(3)

We use quaternions g ∈ R4 to represent elements g ∈ SO(3) as indicated in Equation 17. For a
rotation of φ radians around axis u ∈ R3 with ‖u‖ = 1,

g =

(
cos

φ

2
,u sin

φ

2

)
∈ R4. (30)

The exponential map ExpSO(3) : R3 → SO(3) is

ExpSO(3)x = (cos ‖x‖, x̂ sin ‖x‖), (31)

where x̂ = x/‖x‖ and φ = 2‖x‖ is the angle of rotation. This gives rise to an inverse Jacobian

|J(x)|−1 = φ2/(2(1− cosφ)). (32)

Using Equation 26 we get the density on the group

q̃θ(ExpSO(3)x) =
∑
k∈Z

[
rθ(x + πkx̂)

2‖x + πkx̂‖2

1− cos (2‖x + πkx̂‖)

]
, (33)

where the sum over k stems from the fact that a rotation of φ+ 2kπ around axis x̂ is equivalent to a
rotation of φ around the same axis.

D mGPLVM on Sn

In this section, we discuss how to fit mGPLVMs on spheres. We first consider spheres which are also
Lie groups, and then discuss a general framework for all n-spheres.

D.1 S1,3

We begin by noting that Sn is not a Lie group unless n = 1 or n = 3, thus we can only apply
the ReLie framework to S1 and S3. S1 is equivalent to T 1 and is most easily treated using the
torus formalism above. For S3, we note that SO(3) is simply S3 with double coverage. This is
because quaternions g and−g represent the same element of SO(3) while they correspond to distinct
elements of S3. The Jacobian and exponential maps of S3 are therefore identical to those of SO(3).
The expression for the density on S3 also mirrors Equation 33 except that the sum is over x + 2πkx̂
instead of x + πkx̂:

q̃θ(ExpS3x) =
∑
k∈Z

[
rθ(x + 2πkx̂)

2‖x + 2πkx̂‖2

1− cos (2‖x + 2πkx̂‖)

]
. (34)

We demonstrate S3-mGPLVM on synthetic data from S3 in Figure 6 (bottom).

D.2 Sn/∈{1,3}

The ReLie framework does not directly apply to distributions defined on non-Lie groups. Nevertheless,
we can still apply mGPLVM to an n-sphere embedded in Rn+1 by taking each latent variational
distribution qθj to be a von Mises-Fisher distribution (VMF), whose entropy is known analytically.
Parameterizing group element g ∈ Sn by a unit-norm vector g ∈ Rn+1, ‖g‖ = 1, this density is
given by:

qθ(g; gµ, κ) =
κn/2−1

(2π)n/2In/2−1(κ)
exp(κ gµ · g) (35)
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Figure 6: Applying mGPLVM to synthetic data on S2 (top) and S3 (bottom). Pairwise dis-
tances between the variational means {gµj } are plotted against the corresponding pairwise dis-
tances between the true latent states {gj} for S2 (top left) and S3 (bottom left). Since the
log likelihood is a function of these pairwise distances through the kernel (Equation 15), this
illustrates that mGPLVM recovers the important features of the true latents. Inferred (black)
and true (green) latent states in spherical coordinates for S2 (top middle) and S3 (bottom mid-
dle and bottom right). For S2, we are showing the latent states in spherical polar coordinates
g = (sin θ cosϕ, sin θ sinϕ, cos θ) with θ ∈ [0, π] and ϕ ∈ [0, 2π]. For S3, we use hyperspher-
ical coordinates g = (sinψ sin θ cosϕ, sinψ sin θ sinϕ, sin θ cosψ, cos θ) with θ, ψ ∈ [0, π] and
ϕ ∈ [0, 2π].

where · denotes the dot product. Here, Iv is the modified Bessel function of the first kind at order
v, gµ is the mean direction of the distribution on the hypersphere, and κ ≥ 0 is a concentration
parameter – the larger κ, the more concentrated the distribution around gµ.

Using a VMF distribution as the latent distribution, we can easily evaluate the ELBO in Equation 5
because (i) there are well-known algorithms for sampling from the distribution using rejection-
sampling (Ulrich, 1984) and (ii) both the entropy term H(qθ) and its gradient can be derived
analytically (Davidson et al., 2018). For details of how to differentiate through rejection sampling,
please refer to Naesseth et al. (2016) and Davidson et al. (2018).

In the following, we provide details for applying mGPLVM to S2 for which we do not need to use
rejection sampling and instead use inverse transform sampling (Jakob, 2012). For S2, the VMF
distribution simplifies to (Straub, 2017)

qθ(g; gµ, κ) =
κ

2π(exp(κ)− exp(−κ))
exp(κ gµ · g), (36)

and its entropy is

H(qθ) = −
∫
S2

qθ(g; gµ, κ) log qθ(g; gµ, κ)dg (37)

= − log

(
κ

4π sinhκ

)
− κ

tanhκ
+ 1. (38)

These equations allow us to apply mGPLVM to S2 by optimizing the ELBO as described in the main
text; this is illustrated for synthetic data on S2 in Figure 6 (top).
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E Posterior over tuning curves

We can derive the posterior over tuning curves in Equation 12 as follows:

p(f?i |Y ,G?) =

∫
p(f?i ,G|G?,Y ) dG (39)

=

∫
p(f?i |G?, {G,Y })p(G|Y ) dG (40)

≈
∫
p(f?i |G?, {G,Y })Qθ(G) dG (41)

≈ 1

K

K∑
k=1

p(f?i |G?, {Gk,Y }) (42)

where each Gk is a set of M latents (one for each of the M conditions in the data Y ) sampled from
the variational posterior Qθ(G). The standard deviation around the mean tuning curves in all figures
are estimated from 1000 independent samples from this posterior, with each draw involving the
following two steps: (i) draw a sample Gk from Qθ and (ii) conditioned on this sample, draw from
the predictive distribution p(f?i |G?, {Gk,Y }). Together, these two steps correspond to a single draw
from the posterior. Note that we make a variational sparse GP approximation (Section 2.2.2) and
therefore approximate the predictive distribution p(f?i |G?, {Gk,Y }) as described in Titsias (2009).

F Alignment for visualization

The mGPLVM solutions for non-Euclidean spaces are degenerate because the ELBO depends on the
sampled latents through (i) their uniform prior density, (ii) their entropy, and (iii) the GP marginal
likelihood, and all three quantities are invariant to transformations that preserve pairwise distances.
For example, the application of a common group element g to all the variational means leaves pairwise
distances unaffected and therefore does not affect the ELBO. Additionally, pairwise distances are
invariant to reflections along any axis of the coordinate system we have chosen to represent each
group. Therefore, to plot comparisons between true and fitted latents, we use numerical optimization
to find a single distance-preserving transformation that minimizes the average geodesic distance
between the variational means {gµj } and the true latents {gj}.
For the n-dimensional torus (Figures 2 and 3) which we parameterize as

g ∈ {(g1, · · · , gn);∀k : gk ∈ [0, 2π]},

the distance metric depends on cos(gk − g′k) and is invariant to any translation and reflection of all
latents along each dimension

gk → (αkgk + βk) mod 2π

where αk ∈ {1,−1} and βk ∈ [0, 2π]. We optimize discretely over the {αk} by trying every possible
combination, and continuously over βk for each combination of {αk}.
In the case of S2, S3 and SO(3) (Figures 3 and 6), the distance metrics are invariant to unitary
transformations g → Rg where RRT = RTR = I for the parameterizations used in this work. For
visualization of these groups, we align the inferred latents with the true latents by optimizing over R
on the manifold of orthogonal matrices.

G Automatic relevance determination

As we mention in Section 4, it is possible to exploit automatic relevance determination (ARD)
for automatic selection of the dimensionality of groups with additive distance metrics such as the
Tn-distance in Equation 29. While we have not investigated this in detail, we illustrate the idea here
on a simple example. We consider the same synthetic data as in Figure 2 and fit a T 2-mGPLVM with
a kernel on T 2 that has separate lengthscales `1 and `2 for each dimension:

kT 2
ARD

(g, g′) = α2 exp

(
cos(g1 − g′1)− 1

`21

)
exp

(
cos(g2 − g′2)− 1

`22

)
. (43)
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Figure 7: Automatic relevance determination (ARD) in T 2-mGPLVM. A T 2 model with ARD
was fitted to the T 1 data in Figure 2. (a) Length scales along each of the two dimensions for each
neuron. (b) Posterior variational distributions. Shading indicates ±1 s.t.d. around the posterior mean
in each dimension. (c) Variational mean plotted against the true latent state for each dimension.

Additionally, we assume the variational distribution to factorize across latent dimensions:

qθj (·) = qθ1j (·) qθ2j (·), (44)

such that their entropies add up to the total entropy:

H(qθj ) = H(qθ1j ) +H(qθ2j ). (45)

This corresponds to assuming that each variational covariance matrix Σj (Section 2.2.1) is diagonal.

When fitting this model, we find that one length parameter goes to large values while the other
remains on the order of the size of the space (Figure 7a; note that dT 1 ∈ [0, 4]). This indicates
that neurons are only tuned to one of the two torus dimensions. Additionally, posterior variances
become very large in the non-contributing dimension, i.e. the data does not contain the other angular
dimension (Figure 7b). This further indicates that the model has effectively shrunk from a 2-torus to
a single circle. We note that the entropy of the factor in the variational posterior that corresponds
to the discarded dimension becomes log 2π as the variance goes to infinity in this direction. This
exactly offsets the increased complexity penalty of the prior for T 2 compared to T 1, such that the
two models have the same ELBO. The model thus reduces to a T 1 model, demonstrating how ARD
can be exploited to automatically infer the dimensionality of the latent space.

H Direct products of Lie groups

Here, we elaborate slightly on the extension of mGPLVM to direct products of Lie groups, briefly
mentioned in the discussion (Section 4). Assuming additive distance metrics and factorizable
variational distributions, direct product kernels become multiplicative and entropies become additive
– very much as in our illustration of ARD in Appendix G. That is, for a group product M =
M1 × . . .×ML, we can write

kM(g, g′) =
∏
l

kMl(g, g′), (46)

H(qMθj ) =
∑
l

H(qMl

θj
). (47)

As a simple example, we consider a (T 1 × R1)-mGPLVM which we fit to the Drosophila data from
Section 3.2. Here we find that the T 1 dimension of the group product, which we denote by θ(T

1×R1),
captures the angular component of the data since it is very strongly correlated with the latent state
θT

1

inferred by the simpler T 1-mGPLVM (Figure 8a). It is somewhat harder to predict what features
of the data will be captured by the R1 dimension x(T

1×R1) of the (T 1 × R1)-mGPLVM, but we
hypothesize that it might capture a global temporal modulation of the neural activity. We therefore
plot the mean instantaneous activity ȳ across neurons against x(T

1×R1) and find that these quantities
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Figure 8: (T 1×R1)-mGPLVM. (a) Latent states
inferred by T 1-mGPLVM (Figure 4a) against the
periodic coordinate of a (T 1 × R1)-mGPLVM
fitted to the Drosophila data. (b) Momentary av-
erage population activity ȳt against the scalar Eu-
clidean component of the (T 1 × R1) latent repre-
sentation.

are indeed positively correlated (Figure 8b). This exemplifies how an mGPLVM on a direct product
of groups can capture qualitatively different components of the data by combining representations
with different topologies.

This direct product model is very closely related to the ARD model in Appendix G, and the two can
also be combined in a direct product of ARD kernels. For example, we can imagine constructing a
(Tn × Rn) direct product ARD kernel which automatically selects the appropriate number of both
periodic and scalar dimensions that best, and most parsimoniously, explains the data.

I Implementation

Scaling As mentioned in Section 2.2.2, approximating the GP likelihood term EQθ [log p(Y |{gj})]
in the mGPLVM ELBO scales as O(m2MNK) with m inducing points, M latent states, N neurons,
andK Monte Carlo samples. Estimating the entropy term isO(MKd) for a d-dimensional Euclidean
latent space, O(MK(2kmax + 1)d) for a d-dimensional torus, and O(MK(2kmax + 1)) for SO(3)
and S3, where kmax is the maximum value of k used in Equation 8. For all manifolds considered in
this work, we can compute a closed-form Exp(·) while for general matrix Lie groups, approximating
Exp as a power series is O(d3) (Falorsi et al., 2019), further increasing the complexity of mGPLVM
for such groups.

For our manifolds of interest, computing the likelihood term tends to be the main computational
bottleneck, although the entropy term can become prohibitive for high-dimensional periodic latents
(Rezende et al., 2020). When computing EQθ [log p(Y |{gj})], most of the complexity is due to
inverting NK matrices of size (Mm2)× (Mm2), which can be performed in parallel for each Monte
Carlo sample and neuron. Using PyTorch for parallelization across neurons and MC samples, we can
train T 1-mGPLVM with N = 300 and M = 1000 in ∼100 seconds on an NVIDIA GeForce RTX
2080 GPU with 8GB RAM.

Initialization For all simulations, we initialized the system with variational means at the identity
element of the manifold, but with large variational variances to reflect the lack of prior information
about the true latent states. Inducing points were initialized according to the prior on each manifold
(Equation 1). To avoid variational distributions collapsing to the uniform distribution early during
learning, we ran a preliminary ‘warm up’ optimization phase during which some of the parameters
were held fixed. Specifically, we fixed the variational covariance matrices as well as the kernel
variance parameters (α in Equation 13), and prioritized a better data fit by setting the entropy term to
zero in Equation 5. Learning proceeded as normal thereafter.

Entropy approximation When evaluating Equation 8, we used values of kmax = 3 for the tori
and S3 as in Falorsi et al. (2019) and kmax = 5 for SO(3) since the sum takes steps of π instead
of 2π. In theory, the finite kmax can lead to an overestimation of the ELBO for large variational
uncertainties, as q̃ is systematically underestimated, leading to overestimation of the entropy. To
mitigate this, we capped the approximate entropy for non-Euclidean manifolds at the maximum
entropy corresponding to a uniform distribution on the manifold.
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