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Summary

A major challenge in systems neuroscience is to understand how the dynamics of neural circuits give rise to behaviour.
Analysis of complex dynamical systems is also at the heart of control engineering, where it is central to the design of robust
control strategies. Although a rich engineering literature has grown over decades to facilitate the analysis of such systems,
li�le of it has percolated into neuroscience so far. Here, we give a brief introduction to a number of core control-theoretic
concepts that provide useful perspectives on neural circuit dynamics. We introduce important mathematical tools related to
these concepts, and establish connections to neural circuit analysis, focusing on a number of themes that have arisen from the
modern “state-space” view on neural population dynamics.

Highlights

Control theory o�ers unique, geometric perspectives on neu-
ral circuit dynamics.

Observability and controllability characterize the in-
put/output behaviour of circuits.

Observability reveals input sensitivity, nullspaces, and com-
munication subspaces.

Controllability defines intrinsic manifolds, illuminating re-
cent BCI experiments.

Model reduction helps understand and interpret dynamics
in high-dimensional spaces.

Introduction

Behaviour arises from dynamics that unfold in recurrently
connected neural circuits, both locally within specialized re-
gions and globally acrossmultiple brain areas. To understand
the principles that govern these dynamics, computational
neuroscientists build model networks in a variety of ways:
i) models that directly implement a number of known phys-
iological features of the brain area(s) of interest [1], ii) low-
dimensional latent dynamical models fi�ed to neural pop-
ulation recordings [2–5], and iii) artificial neural networks
trained to perform complex tasks [6]. In all cases, a critical
research step is to understand the behaviour of the model
through an analysis of its dynamics [7, 8].

Basic linear algebra provides useful geometric intuitions for
the structure of population activity pa�erns, o�en repre-
sented as points in a so-called “state-space” (Figure 1; [9–

13]). Concepts such as projections, subspaces, nullspaces,
etc, lie at the core of many linear dimensionality reduc-
tion techniques that are widely used to explore neural
datasets [14–16], and help us reason geometrically about the
computations carried out by neural circuits [17–25]. How-
ever, similar intuitions are more di�icult to obtain for popu-
lation dynamics, i.e. for the temporal evolution of neural ac-
tivity in state space (Figure 1). This challenge is especially
relevant given the recent shi� in focus from static analyses
to dynamical descriptions of circuit computations [4, 10, 17,
26••, 20, 24]. Thus, an important goal in computational neu-
roscience is to develop an “algebra of dynamics”, i.e. a set of
conceptual, algebraic, and numerical tools for the study of
neural circuits.

Control theorists have long been developing such tools [27].
Here, we review the key theoretical concepts of controlla-
bility, observability, model reduction and stability, which we
find particularly relevant to the analysis of neural circuits.
We briefly introduce these concepts in the control engineer-
ing context in which they were developed, and discuss the
new perspectives that they provide on a number of recent
results concerning the dynamics of neural computation.

State space models

A large part of classical control theory is dedicated to the
control of linear state-space models of the form:

dx
dt

= Ax(t) + Bu(t) + noise

y(t) = Cx(t) + noise.
(1)
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Figure 1: State space & control perspective on neural dynamics. The population activity vector x(t) traces out trajectories
in state space (solid black, le� diagram), following a flow (gray arrow) determined by the state matrix A as well as external
inputs u(t) (right diagram; cf. Equation (1)). In a standard feedback control scenario, inputs are computed based on some
measurements y(t) = Cx(t) (green) of the state vector, modifying the flow of activity along a few select “input channels” B
(orange).

Here, A is the so-called “state matrix” that governs the tem-
poral evolution of the activity vector x(t) in the state space,
possibly subject to process noise, and B is an “input ma-
trix” whose columns define the directions along which time-
varying inputs u(t) actuate the system (Figure 1). To control
the state of the system (e.g. steer it along desired trajecto-
ries or towards desired end points), inputs are o�en derived
as feedback from some (noisy) linear measurements y(t) of
the full state, involving a readout matrix C.

Equation (1) will look familiar to many neuroscientists. It
lies at the heart of many statistical models, where it de-
scribes the dynamics of a set of “latent factors” that reca-
pitulate the spatiotemporal structure in population record-
ings [4, 28, 29•]. Due to their analytical tractability, lin-
ear(ized) models have also shed light on a variety of circuit
computations, including short-term memory [30–32], selec-
tive amplification and surround suppression in primary vi-
sual cortex [33••, 34], movement generation[26••, 20], at-
tention and decision-making [35], and probabilistic infer-
ence [36, 37]. Equation (1) has also been the workhorse
of numerous studies on the origin, stimulus-dependence,
and a�entional-modulation of noise correlations [38, 39]. In
many of these contexts, x(t) represents the vector of mo-
mentary firing rates in the network, A encapsulates recur-
rent connectivity and single-neuron leak, and B is a matrix
of input synaptic weights.

Control theory textbooks contain a wealth of results that
summarize important dynamical properties of systems gov-
erned by Equation (1), using matrices that are obtained
through algebraicmanipulations ofA,B andC. We begin our
review with two important such matrices that can be used to
describe the input-output behaviour of a neural network: the
observability and controllability Gramians.

Network observability

Control-theoretic context

Before even a�empting to design a feedback control strat-
egy, a control engineer will first establish feasibility. In par-

ticular, do the available partial observations y(t) of the full
state x(t) provide enough information for e�iciently control-
ling the system? Answers are found in the observability
Gramian [27], a positive definite matrix associated with A
and C and defined as

Q =
∫ ∞
0

exp
(
tAT)CTC exp (tA) dt . (2)

This matrix characterizes how well the initial state x(0), and
therefore any subsequent state, can be inferred from obser-
vations of y(t) and u(t) – systems that make such inferences
are o�en called “observers” [40]. Determining where x(0)
was positioned along a given direction v in state space re-
quires the quantity E(v) = vTQv to be strictly positive. If
it is zero, one simply cannot resolve x(0) along v, and such
ambiguity makes controlling x more di�icult. More gener-
ally, E(v) quantifies an ideal observer’s confidence in this
estimate. Conveniently, Q is also the solution to a simple
“Lyapunov equation”,

ATQ +QA + CTC = 0, (3)

with e�icient solvers available for most programming lan-
guages.

Geometry of input sensitivity in neural circuits

The observability Gramian is a very useful tool for the analy-
sis of neural circuits, as it provides information about a net-
work’s sensitivity to specific input pa�erns, or initial con-
ditions. Specifically, E(v) above can be re-interpreted as the
amount of “energy” in the output y(t) evoked by a pulse of in-
put along direction v in state space [26••] (Figure 2A and B).
Input that momentarily pushes (or initializes) the state along
a highly observable direction typically gives rise to strong
and/or long output transients (Figure 2A, bo�om le�), es-
pecially in networks known as “nonnormal” which include
all physiologically realistic models of brain circuits with bal-
anced excitation and inhibition [26••, 32, 33••, 41]. In con-
trast, weakly observable initial conditions cause y(t) to decay
away rapidly, or outright not to respond (Figure 2A, bo�om
right).
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Figure 2: Network observability. (A) Interpretation of network observability as input sensitivity. Using simple algebraic
techniques based on a neural network’s observability Gramian Q, one can identify directions in state space (i.e. sets of in-
put weights, black arrows) along which input pulses trigger large transients (bo�om le�) in the available readouts (shades
of green), or, on the contrary, generate no output response at all (bo�om right). (B) More generally, the (eigenbasis of the)
observability Gramian defines a full set of orthogonal initial conditions that can be sorted by how much energy they evoke,
from the most to the least. (C) Using the observability Gramian, one can determine the optimal way of stimulating a subset
of neurons (green) to elicit the strongest possible response in another neuron (red). The optimal response (red) here is much
larger than the typical response obtained through random stimulation pa�erns of the same energy (black; gray shading shows
± std.). (D) Illustration of communication subspaces and dynamical nullspaces, explained in the main text. Scale bars denote
20 ms in all panels.

This connection was first exploited to examine the response
properties of high-dimensional, inhibition-stabilized net-
work models of primary motor cortex[26••, 42]. It is also
highly relevant to the current view of motor cortical net-
works as near-autonomous dynamical systems, where ini-
tial conditions (a.k.a. preparatory states) largely determine
the activity trajectories that follow [10, 24, 43–45]. The crit-
ical role of initial states is further corroborated by the suc-
cess of modern data analysis methods such as LFADS [5••],
which use trial-specific initial conditions to accurately pre-
dict subsequent neural population activity through near-
autonomous, nonlinear latent dynamics.

Optimal drive, robustness to perturbations

Knowing a circuit’s sensitivity to inputs can lead to e�icient
strategies for interacting with it, e.g. to most e�iciently drive
or suppress some target cells. Figure 2C shows an example
where the concept of observability is used to derive the op-
timal way of stimulating a subset of neurons, so as to elicit
maximum response in another, non-stimulated neuron.

Conversely, emergent technologies for optical, random-
access perturbations of neural dynamics [46–48] will soon
enable the identification of observability spectra in neural
circuits. This could be done using empirical techniques [49]
similar to the classical reverse correlation-based mapping of
receptive fields in sensory cortices. Alternatively, input sen-

sitivity could be inferred by fi�ing dynamic latent-variable
models, which — beyond explaining variance in the recorded
data — incorporate the e�ect of external perturbations. Re-
cently, by fi�ing such a model to monkey M1 recordings,
Duncker et al. could explain the surprising robustness of M1
dynamics to optogenetic perturbations [50]. Their analysis
suggested that optogenetic inputs transiently excite a set of
weakly observable state-space directions, whose contribu-
tions to the momentary activity state tend to decay rapidly.
This points to the existence of a “dynamical nullspace” in the
circuit.

While weak observability can result from rapidly decaying
directions in the full state space (as discussed above), it can
also result from state-space trajectories evolving orthogo-
nally to the subspace that defines the network readout (green
plane in Figure 1, le�). Such output-null dynamics may un-
derliemovement preparation [18] or learning [23] inmonkey,
where preparatory cortical activity is largely orthogonal to
movement-related activity [51]. An analogous phenomenon
has also been observed in the premotor cortex of mice, where
orthogonality seems achieved through anatomical segrega-
tion of preparatory neurons and output-related neurons. In-
deed, this brain area contains a class of projection neurons
that have a direct influence on movement, and which show
li�le selectivity for the upcoming movement during prepara-
tion; these neurons are genetically distinct from other neu-
rons that show strong preparatory selectivity, and are cou-
pled to the thalamus [52].
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Interacting brain areas

Beyond local circuits, dynamical nullspaces could also
emerge from interactions between distant brain areas. For
example, preparatory activity in mouse premotor cortex re-
covers from unilateral — but not bilateral — optical silencing
during a delayed sensory discrimination task [53]. This sug-
gests that it is the interactions between the two hemispheres
that underpin the system’s weak sensitivity to unilateral per-
turbation. More generally, input sensitivity may dictate how
multiple, interconnected brain areas influence each other.
Consider the two coupled networks of Figure 2D. Network B
responds strongly when the activity of network A traverses
their “communication subspace”, i.e. when A’s input to B
spans B’s most observable modes. On the other hand, it is
also possible for network A to produce “private” activity fluc-
tuations that do not influence B, so long as A’s input falls
in B’s dynamical nullspace. A recent analysis of the joint
dynamics of macaque areas V1 and V2 point to such signal
propagation motifs [25]: a small “communication” subspace
of V1 activity was found to predict V2 activity, with other
“private” dimensions having li�le influence on V2 activity yet
accounting for non-negligible variance in V1 activity. Mecha-
nistically, selective propagation of signals across brain areas
could — in theory — arise from a form of detailed excita-
tion/inhibition balance, which only allows specific balance-
breaking activity transients to propagate[54, 26••].

Network controllability

Control-theoretic context

To establish control feasibility, an engineer will examine not
only the observability of the system (c.f. above), but also its
controllability. Can the state x(t) of the network be steered
along any direction v in state space, using control inputs u(t)
that can only actuate the network along a restricted set of
directions (defined by the columns of B; Figure 1)? Answers
can be found in the controllability Gramian [27], a positive
definite matrix associated with A and B and defined as:

P =
∫ ∞
0

exp (tA)BBT exp
(
tAT) dt (4)

(similar to the observability Gramian in Equation (2), P can
be obtained by solving AP + PAT + BBT = 0). In particular,
theminimum amount of input “energy” required tomove the
state of the system some distance along direction v is propor-
tional to vTP−1v; if this quantity is infinite, no clever control
strategy will ever succeed in moving x along v, whereas if it
is small, control is easy and cheap. Figure 3A illustrates these
ideas in a toy three-dimensional system.

Intrinsic manifolds and control costs

The controllability Gramian P has a useful interpretation
for the analysis of neural circuits: whereas the observability
Gramian encodes a network’s input sensitivity, P encodes
the “intrinsic manifold” of the network’s dynamics, i.e. the

directions in state space that the network activity is most
inclined to visit. This intrinsic manifold is a reflection of
the network’s connectivity (A) and input channels (B; Equa-
tion (4)). More formally, stimulating each of the available
input channels individually results in a collection of state-
space trajectories (Figure 3B) whose covariance matrix is, in
fact, P. Thus, the quantity σ(v) = vTPv is the average energy
in these trajectories along state-space direction v. In partic-
ular, directions with large σ(v) (o�en referred to as “principal
components”) form the “natural repertoire” of the network,
as they contribute a lot to state-space trajectories elicited by
unspecific inputs (Figure 3B,C). In contrast, directions with
small σ(v) are almost never visited, unless the network is
specifically driven by strong input pa�erns (Figure 3A).

The above connection between intrinsic manifold and con-
trol gives an interesting perspective on the results of recent
brain-computer interface (BCI) experiments, in which mon-
keys modulate neural activity in a subset of M1 neurons to
move a cursor on a screen [19, 21, 22]. As these studies show,
how well a monkey can actuate a BCI strongly depends on
the mapping from recorded M1 activity to BCI state vari-
ables (e.g. cursor velocity) — in other words, performance de-
pends on the state-space directions thatM1 activity needs to
visit. In particular, monkeys struggle to learn new mappings
that require M1 to produce activity outside its intrinsic man-
ifold [19, 55]. In the toy illustration of Figure 3D, where the
green plane depicts the intrinsic manifold, that would cor-
respond to cursor velocity being suddenly associated with
neural activity along the pink direction. In fact, even when
the new mapping requires no such di�icult excursions (for
example, velocity originally defined by the yellow direction
and now defined by the blue direction), the cloud of activity
pa�erns generated within the intrinsic manifold under the
newmapping appears similar to the one generated under the
previous mapping [21, 22]. This suggests that learning oc-
curs by repurposing a fixed distribution of within-manifold
activity pa�erns, by reassociating each pa�ern with a new
intended cursor movement.

These phenomenona emerge naturally in networks such as
the one discussed in Figure 3A, which has a set of highly
controllable directions (forming the intrinsic manifold) and
a set of poorly controllable ones (orthogonal to the intrinsic
manifold). Modulation of neural activity within the intrin-
sic manifold is straightforward, as it can exploit the natural
flow of activity without the need for large control inputs. In
contrast, control of activity outside the intrinsic manifold re-
quires much larger inputs, perhaps larger than is physiolog-
ically feasible, thus limiting learnability of outside-manifold
mappings. Moreover, if inputs to the network are energy-
limited, controlling the state of the network along any direc-
tion within the intrinsic manifold will likely produce a fixed,
common distribution of activity pa�erns that is determined
by the controllability spectrum of the network [56].

Structural controllability

A recent study of the nervous system of C. elegans used an
extension of the concept of controllability to investigate the
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Figure 3: Network controllability. (A) Minimum-energy control of a 3-neuron network, which can be easily steered along
two directions in state space (orange and blue), but much less easily along a third direction (pink). Solid lines (top) represent
state-space trajectories under the action of optimal control inputs (bo�om, same color code), ie. those of least “energy” that
achieve the target end points (open circles) in finite time T . (B) Illustration of controllability for the same inhibition-stabilized
network as used in Figure 2A [26]. The controllability Gramian contains information about the amount of variance (or “en-
ergy”) in the activity of any readout, across all possible input channels (shades of orange) through which the network can be
stimulated. In particular, it tells us which readout captures the most (bo�om le�) or least (right) state variance. The scale bar
denotes 20 ms. (C)More generally, the (eigenbasis of the) controllability Gramian defines a full set of orthogonal state-space
directions that can be sorted by how controllable they are, from the most to the least. (D) In BCI experiments, tasks that can
be solved by modulating neural activity within the intrinsic manifold (green) can be learned more rapidly than tasks in which
activity must span other, non-intrinsic directions (gray).

role of various neuron classes in controlling the nematode’s
behaviour [57•]. The authors considered the theoretical im-
pact of individually ablating every possible class of neurons
on the so-called “structural controllability” of the worm’s
muscles. They predicted that ablating certain classes of neu-
ronswould result in a reduction in the number of controllable
muscles. Interestingly, while most of these neuron classes
had already been causally implicated in the control of loco-
motion in previous studies, one neuron class had not been
previously investigated. Ablation of these neurons resulted
in small but significant motor impairments. Analogous pre-
dictions were also made and validated for the ablation of in-
dividual neurons within a class of motor neurons, illustrating
the promise of applying control-theoretic methods to make
causal predictions regarding the neural circuit basis of be-
haviour.

Model reduction

In control engineering, examination of observability and con-
trollability o�en culminates in model reduction: the substi-
tution of the original large-scalemodel with amore tractable,
lower-dimensional model. Principled methods exist for per-
forming dimensionality reduction while preserving the dy-
namic mapping from inputs to outputs. One such method
is “balanced truncation” [27], whereby the state space is
trimmed to eliminate directions that are both weakly con-

trollable and weakly observable (Figure 4).

Critically, a reduced model is cheaper to simulate, enables
computationally e�icient control strategies, and is o�en eas-
ier to understand qualitatively. In neuroscience, model re-
duction has been applied to linearized models of signal prop-
agation along active cables [58]. We speculate it will be use-
ful for reverse engineering brain computations, by analyz-
ing model networks that are either learned from data [5], or
trained [6, 7] or hand-cra�ed [59] to perform a task. For ex-
ample, trained models o�en need to be large enough to find
solutions to their assigned task, but theses solutions o�en
involve low-dimensional dynamics [17, 20]. Model reduction
could help reveal and interpret these dynamics.

Stability and homeostasis

Control theory and neuroscience can also cross-fertilize in
seeking to understand how complex, inherently unstable dy-
namical processes can be controlled and stabilized. Brain
circuits contain major sources of dynamical instability that
are kept in check by specific regulatory processes. Two
prominent examples include i) positive feedback due to the
presence of recurrent excitatory connections, which tend to
cause runaway activity, and ii) positive feedback in Hebbian
learning, causing runaway synaptic potentiation [60]. The
control-theoretic methods aimed at stabilizing unstable sys-
tems could shed light on how neural circuits achieve stable
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Figure 4: Model reduction. An inhibition-stabilized network with 200 neurons (from [26••]) is reduced to a much smaller
linear model of dimension 8. Here, the reduced model responds to time-varying inputs in almost exactly the same way as the
full model does (compare black and dashed green outputs).

behaviour. For example, even simple control rules such as
homeostatic scaling of inhibitory synapses based on post-
synaptic activity can restore E/I balance in networks with
structural heterogeneity [61]. A more sophisticated form
of Hebbian plasticity at inhibitory synapses [41] establishes
and maintains stability in networks with strong excitatory
feedback [62], and can be understood as an approximation
to optimal robust stabilization algorithms [26••].

On a more technical level, elements of systems theory have
inspired useful parameterizations of (linear) latent dynami-
cal models that guarantee stability, even when only limited
data is available to constrain the system [29•, 36]. Recently,
systems theory has also been elegantly combined with sta-
tistical approaches to characterize the stability and other as-
pects of the closed-loop behaviour of networks trained to
have multiple fixed points [63•].

Conclusions

The brain solves a variety of hard control problems, which
are naturally studied in the framework used by engineers
to tackle similar challenges. Control theory has long been
applied to study motor control [64, 65], providing insights
into the computational and algorithmic principles of inter-
nal models [66], error-corrective feedback [67], and plan-
ning [68]. Here, we have reviewed concepts that form the
foundations of classical control theory and are specifically
applicable to the analysis of neuronal network dynamics.
They o�er simple geometric descriptions of the dynamic in-
put/output behaviour of neural circuits, along with a set of
accessible analytical and numerical tools.

While the methods discussed here apply primarily to linear
state-space models, they can be adapted to nonlinear sys-
tems in various ways, from standard linearization to more
advanced operator-theoretic techniques [69]. Further exten-
sions may be necessary for the analysis of recurrent neu-
ral networks that may be operating in highly nonlinear
regimes. As we have noted, the observability and control-
lability Gramians a�ord several equivalent definitions in the
linear case; nonlinear extensions will likely not capture all
of them [49], and the specific needs of neuroscientists could
in fact inspire the development of relevant extensions by the
control community.

In reviewing the most basic properties of linear systems (i.e.
those covered in the first few chapters of most control theory
textbooks [27]), we have only scratched the surface. Control
theory is primarily the science of feedback, and will continue
to provide unique insights into how feedback is used in the
brain to support the functions of single neurons, circuits, and
systems. More generally, dissecting the circuit basis of com-
plex computations such as motor control or reinforcement
learning will benefit from a deeper integration of control the-
ory, machine learning, and neuroscience.
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