
Non-reversible Gaussian processes for identifying
latent dynamical structure in neural data

Virginia M. S. Rutten
Gatsby Computational Neuroscience Unit
University College London, London, UK

& Janelia Research Campus, HHMI
Ashburn, VA, USA

ruttenv@janelia.hhmi.org

Alberto Bernacchia
MediaTek Research

Cambourne Business Park
Cambridge, UK

alberto.bernacchia@mtkresearch.com

Maneesh Sahani
Gatsby Computational Neuroscience Unit

University College London
London, UK

maneesh@gatsby.ucl.ac.uk

Guillaume Hennequin
Department of Engineering
University of Cambridge

Cambridge, UK
g.hennequin@eng.cam.ac.uk

Abstract

A common goal in the analysis of neural data is to compress large population
recordings into sets of interpretable, low-dimensional latent trajectories. This prob-
lem can be approached using Gaussian process (GP)-based methods which provide
uncertainty quantification and principled model selection. However, standard GP
priors do not distinguish between underlying dynamical processes and other forms
of temporal autocorrelation. Here, we propose a new family of “dynamical” priors
over trajectories, in the form of GP covariance functions that express a property
shared by most dynamical systems: temporal non-reversibility. Non-reversibility is
a universal signature of autonomous dynamical systems whose state trajectories
follow consistent flow fields, such that any observed trajectory could not occur in
reverse. Our new multi-output GP kernels can be used as drop-in replacements
for standard kernels in multivariate regression, but also in latent variable models
such as Gaussian process factor analysis (GPFA). We therefore introduce GPFADS
(Gaussian Process Factor Analysis with Dynamical Structure), which models
single-trial neural population activity using low-dimensional, non-reversible latent
processes. Unlike previously proposed non-reversible multi-output kernels, ours
admits a Kronecker factorization enabling fast and memory-efficient learning and
inference. We apply GPFADS to synthetic data and show that it correctly recovers
ground truth phase portraits. GPFADS also provides a probabilistic generalization
of jPCA, a method originally developed for identifying latent rotational dynamics
in neural data. When applied to monkey M1 neural recordings, GPFADS discovers
latent trajectories with strong dynamical structure in the form of rotations.

1 Introduction

The brain has evolved as a rich dynamical system to control and coordinate the other dynamical
systems that make up the body. High-dimensional neural activity can often be efficiently recapitulated
by lower dimensional latent dynamics, and multiple methods have been proposed over the years to
tackle the challenge of extracting interpretable and actionable latent trajectories.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

A first class of methods focuses on explicitly learning the transition function of an underlying
dynamical system. These include parametric models such as linear dynamical systems (LDS)
models (Buesing et al., 2012a,b; Churchland et al., 2012; Macke et al., 2011; Roweis and Ghahramani,
1999) and switching variants (Linderman et al., 2017; Petreska et al., 2011), probabilistic deep learning
approaches such as LFADS (Pandarinath et al., 2018), as well as more flexible non-parametric models
of the transition function and its uncertainty (Deisenroth and Rasmussen, 2011; Duncker et al., 2019).
While appealing in principle, the latter methods do not allow exact inference, must combat pervasive
local optima during training, and are computationally intensive. As such, they have yet to be more
widely adopted in the field.

The second class of methods focuses on modeling the statistics of the latent processes directly,
rather than learning a dynamical model for them. Such methods include Gaussian-process factor
analysis (GPFA) and variants (Yu et al., 2009). Gaussian process (GP)-based methods are data
efficient and have closed form formulas allowing for uncertainty estimation and principled model
selection (Rasmussen and Williams, 2006). Yet, these models fail to capture features of dynamical
systems beyond basic smoothness properties, limiting our capacity to study the dynamics of brain
computations.

We set out to bridge these two classes of models by imparting some notion of “dynamics” to GP-based
models. A key property of autonomous dynamical systems is that they define a consistent mean
flow field in state space, such that any segment of state-trajectory produced by the system is unlikely
to be visited in the opposite direction (though this is not true of strongly input-driven, or partially
observed systems). To capture this property in the Gaussian process framework, we introduce a
measure of second-order non-reversibility and derive a new family of GP covariance functions for
which this measure can be made arbitrarily large. These kernels can be derived from a variety of
usual scalar stationary covariance functions, such as the squared-exponential kernel or the more
expressive spectral mixture kernel (Wilson and Adams, 2013). Conveniently, our non-reversible
multi-output GP construction affords a specific Kronecker structure; we discuss how this property
enables scalability to very large datasets. We validate these kernels on a regression problem where
we show that non-reversible covariances yield better model fits than reversible ones for datasets
originating from dynamical systems. We then introduce non-reversible kernels in GPFA, and call
this variant GPFADS, Gaussian Process Factor Analysis with Dynamical Structure. We show how
GPFADS allows demixing of dynamical processes from other high-variance latent distractors, even
where demixing could not be performed by comparing lengthscales alone. Finally, we apply GPFADS
to population recordings in monkey primary motor cortex. We find that it discovers latent processes
with clear rotational structure, consistent with earlier findings (Churchland et al., 2012).

2 Background: Gaussian Process Factor Analysis (GPFA)

Notation In the following, we use bold x for column vectors, and capital X for matrices whose
elements we denote by xij . In any context where matrix X has been introduced, x̃ is a shorthand
notation for vec

(
X>
)
, where vec(·) is the operator which vertically stacks the columns of the matrix.

The transpose is needed for consistency with the convention used in the rest of the paper, which
requires that the rows be transposed and stacked vertically instead of columns. Finally, IN denotes
the N ×N identity matrix, and 1N denotes the column vector whose N elements are all ones.

Latent variable models offer a parsimonious way of capturing statistical dependencies in multivariate
time series. Gaussian process factor analysis (GPFA; Yu et al., 2009) is one such popular model
used for simultaneous dimensionality reduction and denoising/smoothing of neural population
recordings. Missing data are straightforward to handle, but for simplicity of exposition, we assume
that observations y(t) ∈ RN are available for each of N variates at each of T time points. GPFA
assumes that such observations arise as the noisy linear combination of a smaller set of M latent
trajectories, x(t) = (x1(t), . . . , xM (t))> ∈ RM , each modelled as an independent Gaussian process.
Formally,

xi(·) ∼ GP(0, ki(·, ·))
y(t) ∼ N (µ+ Cx(t), R) (1)

where ki(·, ·) is the covariance function (or “kernel”) of the ith latent GP. The model is trained by
maximizing the log marginal likelihood L(θ) w.r.t. the parameter vector θ, which comprises all kernel
parameters (see below), a mean vector µ ∈ RN×1, a mixing matrix C ∈ RN×M , and a diagonal

2

matrix of private observation noise variances R ∈ RN×N . For a data sample Y ∈ RN×T , the log
marginal likelihood is proportional (up to an additive constant) to

L(θ, Y) ∝ − log |Kyy| − [ỹ − µ⊗ 1T]
>
K−1yy [ỹ − µ⊗ 1T] (2)

with Kyy = (C ⊗ IT)Kxx(C> ⊗ IT) + (R⊗ IT) (3)

where ỹ = vec
(
Y T
)
, Kxx ∈ RMT×MT is the prior Gram matrix, and ⊗ denotes the Kronecker

product. As the latents are a priori independent in this original formulation, Kxx is block diagonal
with the ith diagonal block corresponding to the T × T Gram matrix of latent xi.

Given a particular observation ỹ ∈ RNT , the posterior mean and covariance over latent trajectories
are given by:

E(x̃|ỹ) = Kxx(C> ⊗ IT)K−1yy [ỹ − µ⊗ 1T] (4)

Cov(x̃|ỹ) = Kxx −Kxx(C> ⊗ IT)K−1yy (C ⊗ IT)Kxx. (5)

Note that once ṽ = K−1yy [ỹ − µ⊗ 1T] is computed, the rest of the computation of the posterior
mean can be sped up by using the Kronecker identity (IT ⊗C>)ṽ = vec

(
C>V

)
. We further outline

how the relevant quantities for inference and learning can be stably and efficiently computed for the
original and our own model in Appendix F.1. We also discuss a highly scalable implementation in
Appendix F.2.

3 Nonreversible Gaussian processes

A major limitation of the original GPFA model summarized in Section 2 is the assumption that the
latent processes are independent a priori. This in turn severely impairs the ability to extrapolate
or look into any learned prior relationships between latents in search for dynamical structure (e.g.
consistent phase lags between latents, delays, etc.).

In this paper, we introduce novel multi-output covariance functions aimed at expressing a key property
of dynamical systems: that they produce state-space trajectories that follow lawful flow fields and are
therefore temporally non-reversible. We begin by formalizing this idea of temporal non-reversibility
for stationary GPs, before describing our construction of non-reversible multi-output GP kernels,
which we then combine with GPFA, yielding GPFADS, Gaussian Process Factor Analysis with
Dynamical Structure.

3.1 Quantifying non-reversibility and decomposing multi-output GP covariances

Consider a stationary zero-mean multi-output Gaussian process x(t) = (x1(t), . . . , xM (t)) with
covariance functions kij(τ) , E [xi(t)xj(t+ τ)]. We define x to be temporally reversible if, and
only if, all pairwise cross-covariance functions have no odd part, i.e. kij(τ) = kij(−τ) for all
i 6= j and τ ∈ R. This is equivalent to the condition that the spatial cross-covariance matrix
K(τ) , E

[
x(t)x(t+ τ)>

]
be symmetric for any lag τ . Thus, only multi-output GPs can be made

non-reversible. To quantify departure from pure reversibility in a multi-output GP, we introduce the
following measure of non-reversibility:

ζ =

(∫∞
−∞ ‖K(τ)−K(−τ)‖2F dτ∫∞
−∞ ‖K(τ) +K(−τ)‖2F dτ

)1/2

(6)

where ‖ · ‖F denotes the Frobenius norm. In Appendix A, we prove that 0 ≤ ζ ≤ 1. We note that, by
this definition, any scalar (one-dimensional) GP is necessarily fully reversible (ζ = 0).

Our goal is to construct GP covariance functions that break reversibility. As a first step, we prove in
Appendix B that any stationary M -output GP covariance admits a finite “Kronecker” decomposition:

K(τ) =

n+∑
`=1

λ+` A
+
` f

+
` (τ) +

n−∑
`=1

λ−` A
−
` f
−
` (τ) with


Tr
(
A±` A

±
`′
>
)

= δ``′∫
f±` (τ)f±`′ (τ) dτ = δ``′

(7)

3

x1

x2

squared exponential
reversible (ζ = 0)

squared exponential
non-reversible (ζ = 1)

cosine
non-reversible (ζ = 1)

spectral mixture
non-reversible (ζ = 1)

Figure 1: Sample trajectories from various planar GP kernels, defined in Eq. 9. Five samples
trajectories are shown over an interval of 5 time units for the following kernels, in this order: SE kernel
f(τ) = exp(−τ2/2) with α = 0, SE kernel with α = 1, cosine kernel f(τ) = cos(0.15× 2πτ) with
α = 1, and spectral mixture kernel f(τ) = exp(−τ2/(2× 2.52) cos(0.06× 2πτ) with α = 1. Here
we have set σ1 = σ2 and ρ = 0, resulting in spherical planar processes.

where n+ + n− = M2 and λ±` ≥ 0. In this decomposition, {A±` } is a collection of M × M
symmetric (+) or skew-symmetric (-) matrices, all orthonormal to each other in the sense expressed
in Eq. 7. Similarly, {f±` } is a matching set of orthonormal even (+) or odd (-) scalar functions. We
assume without loss of generality that the weighting coefficients {λ±` } are ordered by decreasing
value within each (+) and (-) sets.

The decomposition in Eq. 7 is a “Kronecker” decomposition (Van Loan, 2000), because the Gram
matrix instantiating K(τ) at a discrete set of time points is composed of a sum of Kronecker products:
K =

∑
` λ

+
` A

+
` ⊗ F+

` +
∑
` λ
−
` A
−
` ⊗ F−` with F+

` and F−` ∈ RT×T . This decomposition
conveniently isolates terms that either strengthen (+) or break (-) reversibility. In particular, we
show in Appendix B that the non-reversibility index of the process is related to the {λ±` } coefficients
through:

ζ =

(∑
(λ−`)2∑
(λ+`)2

)1/2

. (8)

Thus, breaking reversibility requires the presence of skew-symmetric/odd terms. However, the
decomposition does not immediately tell us how to construct such a non-reversible covariance
function. Although one can show that the first term A+

1 f
+
1 (τ) must be positive definite, the addition

of even a single A−1 f
−
1 (τ) odd term will not preserve positive definiteness in general, unless carefully

specified. One of the main contributions of this work is to provide a constructive way of building
sums of Kronecker products similar to Eq. 7, for which positive-definiteness is preserved while ζ can
differ substantially from zero.

3.2 Planar non-reversible processes

To build intuition, we begin with a planar (two-output) process, x(t) = (x1(t), x2(t))>, with zero
mean and stationary matrix-valued covariance function K(·). If x1(t) and x2(t) are independent
(kij(·) = δijf(·)) as in the original GPFA model (Yu et al., 2009), then the process is fully reversible.
Consider, instead, the following construction:

K(τ) =

(
σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

)
︸ ︷︷ ︸

A+

f(τ) + α

(
0 σ1σ2

√
1− ρ2

−σ1σ2
√

1− ρ2 0

)
︸ ︷︷ ︸

A−

H[f](τ) (9)

where f(·) is any scalar covariance function (an even function),H[f](·) denotes its Hilbert transform
(an odd function), |ρ| ≤ 1 and α ∈ R. We show in Appendix C that Eq. 9 is a valid, positive
semi-definite covariance, provided that |α| ≤ 1. Since H[f](0) = 0, the first matrix on the r.h.s.
parameterizes the instantaneous covariance K(0) of the two processes (up to a positive scalar given
by f(0)). Moreover, marginally, both x1(t) and x2(t) have temporal autocovariance function f(·).

Importantly x1 and x2 are now temporally correlated in such a way that reversibility is broken. In
fact, Eq. 8 shows that |α| is related to the non-reversibility index ζ defined in Eq. 6 in the following

4

stationary kernel f(τ) Hilbert transformH[f](τ)

exp(−τ2/2) 2π−1/2D(τ/
√

2)

cos(ω0τ) sin(ω0τ)

sin(ω0τ)/(ω0τ) [1− cos(ω0τ)]/(ω0τ)

(1 + τ2)−1 τ(1 + τ2)−1

exp(−|τ |)
[
e−τEi(τ)− eτEi(−τ)

]
/π

exp(−τ2/2) cos(ω0τ) exp(−τ2/2) sin(ω0τ) + exp(−ω2
0/2) Imw((τ + jω0)/

√
2)

Table 1: Hilbert transforms of usual scalar GP kernels. Non-unit length-scales can be accom-
modated via a simple change of variable. Here, D(·) denotes the Dawson function, Ei(·) is the
exponential integral, and w(·) is the Faddeeva function.

way:

ζ = |α|
[

2(1− ρ2)

(σ1/σ2)2 + (σ2/σ1)2 + 2ρ2

]1/2
, (10)

which has a maximum of |α| when σ1 = σ2 and ρ = 0, i.e. for an instantaneously spherical process.
Thus, Eq. 9 lets us construct planar GPs with arbitrary degrees of non-reversibility, with ζ ranging
from 0 to 1.

For the construction of Eq. 9 to be of any use, one needs a practical way of evaluating the Hilbert
transform of the marginal temporal covariance f(·). In Table 1, we provide a list of Hilbert transform
pairs for several commonly used stationary GP kernels. Notably, we cover the case of the spectral
mixture kernel (SM, last row of the table; Wilson and Adams, 2013), which currently achieves
state-of-the-art results in GP-based extrapolation for one-dimensional timeseries. Although some
of the Hilbert transforms that we were able to derive involve exotic functions, such as the Dawson
and Faddeeva functions, these are readily available in most numerical programming environments.
Moreover, they have analytical derivatives (Appendix D), such that they can easily be added to
standard automatic differentiation software to enable automatic gradient computations for the model
evidence e.g. in GP regression or GPFA (see below).

Fig. 1 illustrates the behavior of various spatially spherical planar GP kernels constructed from Eq. 9
with different kernels f(·). In cases where ζ = 1, we emphasize that the time-reversed version of
each of the samples shown (or indeed, of any subset thereof) has zero probability density under the
prior from which it was drawn (Appendix C).

3.3 Fourier domain interpretation

To gain more insight into planar non-reversible GPs, we present an alternative construction of the
process defined in Eq. 9, in the frequency domain. This construction can also serve as an alternative
proof that Eq. 9 constitutes a valid GP covariance (see also Appendix C). We begin by noting that the
Fourier transform ofH[f] equals −j sgn(ω)f̂(ω), where f̂(ω) is the Fourier transform of f . In other
words,H[f] is the real function that is phase shifted by π/2 away from f at all frequencies. Thus,
using the Wiener-Khinchin theorem, the Fourier-domain equivalent of Eq. 9 is:

E
[
x̂1(ω)x̂1(ω)

]
= σ2

1 f̂(ω), E
[
x̂2(ω)x̂2(ω)

]
= σ2

2 f̂(ω), (11)

E
[
x̂1(ω)x̂2(ω)

]
= σ1σ2f̂(ω)

[
ρ− α

√
1− ρ2 j sgn(ω)

]
, (12)

where · denote the complex conjugate and E[·] denotes expectations w.r.t. the joint processes
(x̂1, x̂2) specified in the frequency domain. It is easy to verify that these (cross-)spectral densities can

5

be achieved by sampling the two processes according to:

x̂1(ω) = σ1

√
f̂(ω)

[
ε̂1(ω)

√
1− β + η̂(ω)

√
β
]

(13)

x̂2(ω) = σ2

√
f̂(ω)

[
ε̂2(ω)

√
1− β + η̂(ω) exp(j sgn(ω)ϕ)

√
β
]

(14)

where ε1(t), ε2(t) and η(t) are independent white noise processes with unit variance, and β and ϕ
obey the following parameter correspondance: ρ = β cos(ϕ) and α

√
1− ρ2 = β sin(ϕ). In other

words, x1(t) and x2(t) are each entrained to a common latent process η(t) with some degree of
coherence β, and some frequency-independent phase lag (0 for x1 without loss of generality, and ϕ
for x2). In particular, for an instantaneously uncorrelated joint process (ρ = 0), we have ϕ = π/2
and β = α. Spatial correlations ρ 6= 0 can be introduced through phase shifts ϕ different from π/2.

3.4 Higher-dimensional non-reversible priors

The non-reversible planar processes described in Section 3.2 can be extended to M -output processes
with M > 2 in several ways. Here, we focus on simple combinations of individual planes, but
see Appendix E for potentially more flexible approaches. Specifically, we construct an M-output
covariance function as a superposition of planar processes of the form of Eq. 9:

K(τ) =
∑

1≤i<j≤M

Aij+fij(τ) + αijA
ij−H[fij](τ) (15)

with

Aij+uv = σ2
ij,1δuiδvi + σ2

ij,2δujδvj + σij,1σij,2ρij(δuiδvj + δujδvi) (symm. PSD matrix) (16)

Aij−uv = σij,1σij,2

√
1− ρ2ij (δuiδvj − δujδvi) (skew-symm. matrix) (17)

and |αij | ≤ 1. Note that A+
ij and A−ij are defined in the same way as A+ and A− in Eq. 9, and

involve only two of the latent dimensions (i and j). Thus, each term in the sum describes a covariance
over a pair of dimensions. This sum of planar kernels is motivated by the general decomposition in
Eq. 7, though it does not obey the orthogonality constraints therein. In our GPFADS experiments, we
further truncate this sum to M/2 non-overlapping planes with no shared latent dimensions.

4 Experiments

In this section, we begin by demonstrating the utility of non-reversible GP priors for modeling
time-series data produced by dynamical systems. We then go on to introduce such non-reversible
priors in GPFA, and show that GPFADS recovers the Markov state of low-dimensional dynamical
systems embedded in high-dimensional data. We also apply GPFADS to primary motor cortex data,
where it automatically discovers rotational dynamics that have been shown to emerge during reaching
movements (Churchland et al., 2012).

4.1 Non-reversible GP priors better capture dynamics

Fig. 2 illustrates the relevance of non-reversible planar processes of the type of Eq. 9 for modelling
multivariate time-series produced by dynamical systems. We simulated state trajectories of the
classical pendulum (ẋ1 = x2 and ẋ2 = − sin(x1)) as well as the Duffing oscillator (ẋ1 = x2
and ẋ2 = x1 − x31), starting from random initial conditions (Fig. 2A). We then fitted a GP with
kernel given by Eq. 9, either with α optimized as part of the fit (‘non-rev’), or pinned to zero (‘rev’).
The non-reversible model consistently outperformed the reversible one on cross-validated marginal
likelihood (Fig. 2B). Importantly, by optimizing the non-reversibility parameter α, the model learned
to capture the phase relationship between x1 and x2, resulting in much better extrapolations than
for the reversible model (Fig. 2C). In particular, it was possible to accurately reconstruct x2 by only
conditioning on x1 and the initial condition for x2.

6

x2

x1
600

650

600 650 −2

−1

0

1

2

x2

x1

500

550

500 550 −2

−1

0

1

2

te
st
L
L
(n
o
n
-r
ev
)

p
re
d
ic
ti
o
n
s

te
st
L
L
(n
o
n
-r
ev
)

test LL (rev)

p
re
d
ic
ti
o
n
s

time [a.u.]

true x1

true x2

x2 posterior (rev.)
x2 posterior (non-rev.)

A B C

Figure 2: Non-reversible GP regression on state trajectories of the classical pendulum (top)
and the Duffing oscillator (bottom). (A) Five of the 20 planar trajectories (x1(t), x2(t)) used for
training. Each bout of training data (color-coded) is of the same duration and contains several
cycles, the exact number of cycles depending on the (conserved) Hamiltonian energy. (B) Marginal
likelihood for 10 individual test trajectories, for the planar reversible SE kernel (x-axis, α pinned to
zero) and its non-reversible counterpart (y-axis, α optimized to 0.99 for the pendulum, and 0.9 for
the Duffing oscillator). (C) Posterior over x2(t) in each model, conditioned on the full time course of
x1 (dashed black) but only on the first time bin of x2. Ground truth x2(t) is in solid black.

4.2 GPFADS: recovering embedded latent dynamical systems

We now combine GPFA with the non-reversible multi-output priors introduced in Section 3, and
call this combination GPFADS, Gaussian Process Factor Analysis with Dynamical Structure. In
this section, we investigate the extent to which this extension of GPFA allows us to learn something
about the dynamics that might underlie a set of multivariate time-series. We reason that noise tends
to be more time-reversible than signal generated from a dynamical process, such that placing a
non-reversible prior over latent trajectories might let us demix signal with dynamical structure from
noise. To demonstrate this, we embedded a 2D dynamical system, the Van der Pol oscillator (ẋ1 = x2
and ẋ2 = (1 − x21)x2 − x1), into a higher dimensional ambient space (N = 6). We also included
another (orthogonal) latent plane in which activity was drawn independently for each of the two
dimensions from a GP with squared-exponential kernel. We matched the timescales of this reversible
“distractor” process to the characteristic timescales of the Van der Pol oscillator.

We trained both GPFADS and GPFA with M = 4 latent dimensions on the same set of 50 trajectories,
with the Van der Pol oscillator seeded with random initial states in each one. For GPFADS, we
used the kernel described in Eq. 15 with all fij(·) set to the squared-exponential kernel (with
independent hyperparameters), and with the sum over (i, j) planes restricted to (1, 2) and (3, 4) –
i.e. two independent, orthogonal planes. For GPFA, we placed independent squared-exponential
priors on each of the 4 latent dimensions (Yu et al., 2009). We note that the two models had the same
number of parameters: GPFA had two more timescales than GPFADS, but the latter model had two
learnable non-reversibility parameters α12 and α34.

We found that GPFADS successfully demixed the plane containing the oscillator from that containing
the distractor process. Indeed, after training, one of the two latent planes was highly non-reversible
(|α12| = 0.88, vs. |α34| = 0.13), and posterior trajectories in the non-reversible plane recovered the
state trajectories of the Van der Pol oscillator (Fig. 3, left). In contrast, despite GPFA being able to
correctly learn the various timescales in the latent processes, it failed to demix signal from noise, such
that no clear dynamical picture emerged (Fig. 3, right). GPFA also performed worse than GPFADS
based on the cross-validated marginal likelihood (not shown).

7

Figure 3: GPFADS recovers the state trajectories of
a dynamical system embedded in a high-dimensional
ambient space. GPFADS and GPFA latent trajectories
(posterior mean) inferred from observations arising as a
mixture of trajectories produced by the Van der Pol oscilla-
tor and a noisy process of equal variance, each embedded
in 6D and added together with white noise (see text for
details). For GPFADS, we show the two latent planes over
which separate non-reversible planar priors were placed.
For GPFA, we only show two arbitrarily chosen planes,
but any other combination of latent dimensions resulted in
similar unstructured trajectories.

4.3 Uncovering rotational dynamics in M1

Collective neural activity in monkey and human primary motor cortex (M1) has been shown to embed
strong rotational latent dynamics (Churchland et al., 2012; Pandarinath et al., 2018). The extraction
of these dynamics has historically relied on a method called jPCA purposely designed to extract latent
rotations wherever they exist. At the heart of such analysis is the desire to reveal dynamical structure
in population activity, but one potential concern with jPCA is that it biases this search towards pure
rotations, whereas dynamics could in fact be of other forms. With this in mind, we applied GPFADS
to M1 population recordings performed in monkey during reaching (Fig. 4; Churchland et al., 2012),
to investigate the extent to which rotational dynamics are revealed by a method which does not
explicitly look for them, but only indirectly through a search for non-reversible behavior.

The data consisted of N = 218 neurons whose activity time-course was measured in each of 108
different movement conditions, and aligned temporally to the onset of movement. For each neuron,
activity was averaged over hundreds of stereotypical repetitions of each movement, and further
smoothed and ‘soft-normalized’ (Churchland et al., 2012). We fitted GPFADS with an increasing
number of latent dimensions (M = 2, 4, 6; Fig. 4A-C). For each M , we used a non-reversible
M -output GP kernel of the form described in Eq. 15, though we restricted the number of possible
planes to M/2 independent planes with no shared dimensions. As C was not constrained to be
orthogonal we fixed ρ = 0, as any prior spatial correlations in a given plane could in this case be
absorbed by a rotation of the corresponding two columns of C. Due to the smoothing of neural
activity at pre-processing stage (which we did not control), we found that fitting GPFA(DS) was
prone to so-called Heywood cases where some diagonal elements of R in Eq. 1 converge to very
small values if allowed to (Heywood, 1931; Martin and McDonald, 1975). To circumvent this, here
we constrained R ∝ I , but note that this issue would likely not arise in the analysis of single-trial,
spiking data.

For M = 2, GPFADS learned a mixing matrix C that was near identical (up to a rotation) to the
one learned by the original GPFA model (not shown). This is not surprising: for M = 2, a good fit
for GPFADS and GPFA alike is likely to be one in which the two columns of C capture the most
data variance, regardless of how non-reversible latent activity happens to be in the plane defined
by these two columns. Nevertheless, we found that GPFADS learned a non-reversibility parameter
α12 = 0.72 in this case, indicating that dynamics were fairly non-reversible in this top subspace.
Importantly, when GPFADS was fit with a larger latent dimension (M = 4 or 6; Fig. 4B-C), it cleanly
segregated latent trajectories into strongly rotatory planes (|αij | ∈ {0.94, 0.85, 0.95}) and planes
that absorbed remaining fluctuations with less apparent dynamical structure (|αij | ∈ {0.35, 0.59}).
With increasing latent dimension, we found that allowing for non-reversibility in the prior yielded
increasing benefits over an equivalent model where all {αij} parameters were set to zero (and the
other parameters optimized as normal; Fig. 4D).

5 Discussion

A great challenge in neuroscience is to unravel the dynamical mechanisms that underlie neuronal
computations. As a first step to this, many data analysis methods focus on inferring latent processes
which compactly summarize observations of neural activity in various tasks. Gaussian process-
based methods, such as GPFA (Yu et al., 2009), offer data-efficient ways of extracting such latent

8

α = 0.72 0.94

0.35

0.85

0.95

0.59

−20 0 20

M = 2

0 400

time (ms)

M = 4 M = 6

marg. likelihood difference
(non-rev − rev)

A B C

D

Figure 4: Discovering latent dynam-
ical structure in primary motor cor-
tex with GPFADS. (A-C) GPFADS
latent trajectories (posterior mean) for
M = 2 (A, one plane), M = 4 (B,
two planes) and M = 6 (C, three
planes), for all movement conditions.
The value of |αij | in Eq. 15 for each
of the M/2 planes is shown near each
plot. All plots share the same scale,
and planes are ordered from top to bot-
tom by decreasing total variance in the
learnt prior (σ2

i + σ2
j). (D) Difference

in marginal likelihood for each of 35
trajectories in the test set, between GP-
FADS (in which the non-reversibility
parameters {αij} are learned) and a
similar model where these parameters
are pinned to zero. Colors refer to the
3 models (see title colors in A-C). Re-
sults were found to be highly consis-
tent over independent splits of the 108
conditions into train and test sets.

processes along with associated uncertainty. However, these methods fail to explicitly capture the
dynamical nature of neural activity beyond basic smoothness properties. Here, we set out to impart
some notion of “dynamics” to GP-based models, using temporal non-reversibility as a proxy for
dynamics. We introduced a measure of second-order non-reversibility and derived a new family of
GPs for which any sample has lower probability of occurring in reverse. We found that these priors
outperform standard reversible ones on a number of datasets known to emanate from dynamical
systems, including recordings from primary motor cortex.

An instance of a non-reversible kernel was introduced previously by Parra and Tobar (2017), which
extended the spectral mixture model to a multi-output covariance expressing a variety of time delays
and phase lags between dimensions (see also Appendix G). Here we have taken a different approach
using the Hilbert transform, which – unlike Parra and Tobar (2017)’s kernel – admits a Kronecker
factorization enabling scalability to large datasets.

While temporal non-reversibility is an expected property of most dynamical systems in which state
trajectories follow a lawful flow-field (unless they are strongly input driven), it is an incomplete
characterization. In particular, the trajectories generated by our non-reversible GP models (Fig. 1)
often cross over, which would not occur in an autonomous dynamical system where the flow would
be entirely determined by the momentary state (unless the state is only partially observed). It would
be interesting to explore non-reversible GP kernels that also express this complementary property
— while the cosine kernel in Table 1 satisfies both properties, it is unclear if a more general, less
constraining form exists. Such models might be particularly well-suited for modeling population
activity in M1 which is markedly “untangled” (Russo et al., 2018), i.e. lacks cross-overs.

Other non-probabilistic methods have been proposed for reducing the dimensionality of datasets
whilst preserving “dynamical” characteristics. For example, Dynamical Components Analysis (DCA;
Clark et al., 2019) seeks the lower-dimensional subspace that maximizes predictive information. The
authors showed that DCA can successfully recover the Markov state of low-dimensional dynamical
systems embedded in high dimensions, similarly to GPFADS in Fig. 3. GPFADS is even more closely
related to another dimensionality reduction technique which we have proposed previously, Sequential
Components Analysis (SCA; Rutten et al., 2020), in which the low-dimensional projection is chosen
to maximize our measure of second-order non-reversibility in Eq. 6. However, in contrast to SCA,
GPFADS does not explicitly seek to maximize this measure, but instead automatically learns the
degree of non-reversibility (determined by the kernel hyper-parameters) that best explains the data.

9

Acknowledgments

We thank Ta-Chu Kao for sharing his Cholesky-GPFA derivation, and Richard Turner for discussions.
This work was funded by the Gatsby Charitable Foundation (VMSR, MS), the Simons Foundation
(SCGB 543039; MS) and a Janelia HHMI Graduate Fellow Research Scholarship (VMSR).

6 Broader impact

From molecules to stock-markets, from short timescales to long, the arrow of time can be seen
in the evolution of natural living systems. Indeed, the dynamics of natural living systems are not
time-reversible, they depart from “thermodynamic equilibrium” (Gnesotto et al., 2018). Despite
the ubiquity and importance of non-reversibility, there is a paucity of methods for exploring the
spatio-temporal structure of irreversibility in multivariate time series. The new class of non-reversible
covariance functions we developed makes use of this intrinsic property, offering the potential of
exploiting this natural feature in a range of data analysis algorithms.

In general, quantifying and tracking changes in reversibility over time could be useful in detecting
the early onset of real world events. More specifically, we expect that one of the larger impacts
of the method will be in the field of brain-machine interfaces (BMI) and neuroprosthetics. BMIs
have the possibility of revolutionizing how we live. Optimizing the interface both at the hardware
and software level is key to making this a reality. Regarding software, identifying actionable latent
variables embedded in high-dimensional neural activity is of particular importance in facilitating
communication. Given that behavior is non-reversible, the neural activity that causally drives this
behavior is likely to also be non-reversible, thus seeking latents with such property seems highly
promising. Moreover, BMI algorithms often need to be run online which the scalability of our method
would also permit. These applications come with ethical and societal concerns, in particular regarding
privacy and responsibility. These ethics challenges are being actively investigated by the field of
bioethics (Clausen, 2008) and the broader community; and we hope that such considerations will
continue to shape the future research and reality.

References
Buesing, L., Macke, J. H., and Sahani, M. (2012a). Learning stable, regularised latent models of

neural population dynamics. Network: Computation in Neural Systems, 23:24–47.

Buesing, L., Macke, J. H., and Sahani, M. (2012b). Spectral learning of linear dynamics from
generalised-linear observations with application to neural population data. In Advances in neural
information processing systems, pages 1682–1690.

Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P., Ryu, S. I., and
Shenoy, K. V. (2012). Neural population dynamics during reaching. Nature, 487(7405):51–56.

Clark, D., Livezey, J., and Bouchard, K. (2019). Unsupervised discovery of temporal structure in
noisy data with dynamical components analysis. In Advances in Neural Information Processing
Systems, pages 14267–14278.

Clausen, J. (2008). Moving minds: ethical aspects of neural motor prostheses. Biotechnology Journal:
Healthcare Nutrition Technology, 3(12):1493–1501.

Deisenroth, M. and Rasmussen, C. E. (2011). Pilco: A model-based and data-efficient approach to
policy search. In Proceedings of the 28th International Conference on machine learning (ICML-11),
pages 465–472.

Duncker, L., Bohner, G., Boussard, J., and Sahani, M. (2019). Learning interpretable continuous-time
models of latent stochastic dynamical systems. arXiv preprint arXiv:1902.04420.

Gnesotto, F., Mura, F., Gladrow, J., and Broedersz, C. (2018). Broken detailed balance and non-
equilibrium dynamics in living systems: a review. Reports on Progress in Physics, 81(6):066601.

Heywood, H. (1931). On finite sequences of real numbers. Proc. Royal Soc. London Series A,
134:486–501.

10

Linderman, S., Johnson, M., Miller, A., Adams, R., Blei, D., and Paninski, L. (2017). Bayesian
learning and inference in recurrent switching linear dynamical systems. In Artificial Intelligence
and Statistics, pages 914–922.

Macke, J. H., Büsing, L., Cunningham, J. P., Yu, B. M., Shenoy, K. V., and Sahani, M. (2011).
Empirical models of spiking in neural populations. In Shawe-Taylor, J., Zemel, R. S., Bartlett,
P., Pereira, F. C. N., and Weinberger, K. Q., editors, Advances in Neural Information Processing
Systems, volume 24, pages 1350–1358.

Martin, J. K. and McDonald, R. P. (1975). Bayesian estimation in unrestricted factor analysis: A
treatment for heywood cases. Psychometrika, 40:505–517.

Pandarinath, C., O’Shea, D. J., Collins, J., Jozefowicz, R., Stavisky, S. D., Kao, J. C., Trautmann,
E. M., Kaufman, M. T., Ryu, S. I., Hochberg, L. R., et al. (2018). Inferring single-trial neural
population dynamics using sequential auto-encoders. Nature methods, 15(10):805–815.

Parra, G. and Tobar, F. (2017). Spectral mixture kernels for multi-output Gaussian processes. In
Advances in Neural Information Processing Systems, pages 6681–6690.

Petreska, B., Byron, M. Y., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., and Sahani,
M. (2011). Dynamical segmentation of single trials from population neural data. In Advances in
neural information processing systems, pages 756–764.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT
press.

Roweis, S. and Ghahramani, Z. (1999). A unifying review of linear Gaussian models. Neural
computation, 11:305–345.

Russo, A. A., Bittner, S. R., Perkins, S. M., Seely, J. S., London, B. M., Lara, A. H., Miri, A.,
Marshall, N. J., Kohn, A., Jessell, T. M., et al. (2018). Motor cortex embeds muscle-like commands
in an untangled population response. Neuron, 97:953–966.

Rutten, V., Bernacchia, A., and Hennequin, G. (2020). Sequential components analysis. In Cosyne,
Denver, CO. T-22.

Van Loan, C. F. (2000). The ubiquitous kronecker product. Journal of computational and applied
mathematics, 123(1-2):85–100.

Wilson, A. and Adams, R. (2013). Gaussian process kernels for pattern discovery and extrapolation.
In International conference on machine learning, pages 1067–1075.

Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., and Sahani, M. (2009).
Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population
activity. In Advances in neural information processing systems, pages 1881–1888.

11

Appendix — Non-reversible Gaussian processes
for identifying latent dynamical structure in neural data

A Boundedness of the reversibility index

In this section, we prove that for a stationary multi-output GP, the reversibility index defined in Eq. 6
is bounded between 0 and 1. Recall the definition of the (squared) reversibility index:

ζ2 =

∫∞
−∞ ‖K(τ)−K(−τ)‖2F dτ∫∞
−∞ ‖K(τ) +K(−τ)‖2F dτ

. (18)

Since ‖X‖2F = Tr(XX>), we can expand this into:

ζ2 =
Tr
∫∞
−∞K(τ)K(τ)> dτ − Tr

∫∞
−∞K(τ)K(τ) dτ

Tr
∫∞
−∞K(τ)K(τ)> dτ + Tr

∫∞
−∞K(τ)K(τ) dτ

. (19)

The first term in both the numerator and the denominator is non-negative because the integral of outer
products K(τ)K(τ)> is positive semi definite (PSD). We are left to show that the second term is
non-negative too, which would then imply 0 ≤ ζ ≤ 1. From Parseval’s theorem, we have that:∫ ∞

−∞
K(τ)K(τ) dτ =

∫ ∞
−∞

K̂(ω)K̂(ω) dω (20)

where ·̂ denotes the Fourier transform (assumed to exist) and · denotes the complex conjugate.
Furthermore, from Cramér’s theorem, since K(·) is a stationary cross-covariance function, K̂(ω) is

Hermitian PSD, and so is K̂(ω), for any ω. Finally, for any two Hermitian PSD matrices, A and B, it
can be shown that Tr(AB) ≥ 0 (Theorem 4.3.53 in Horn and Johnson, 2012). Thus, we have shown
that:

Tr

∫ ∞
−∞

K(τ)K(τ)>dτ ≥ 0 (21)

Tr

∫ ∞
−∞

K(τ)K(τ)dτ ≥ 0 (22)

from which we can conclude that: 0 ≤ ζ ≤ 1.

B General Kronecker decomposition of stationary multi-output covariances

Here, we prove the existence of the decomposition of Eq. 7. Let K(τ) be a matrix-valued (i.e. multi-
output) cross-covariance function; we assume that each scalar cross-covariance function Kij(·) is in
L2. From the singular value decomposition theorem for compact operators in Hilbert spaces (Crane
et al., 2020), there exist a basis set of M2 functions {f`(·) ∈ L2}M2

`=1, a matching set of matrices
{A` ∈ RM×M}M2

`=1, and a corresponding set of positive singular values {λ` ∈ R+}M2

`=1 such that:

K(τ) =

M2∑
`=1

λ`A` · f`(τ) (23)

with the following orthonormality conditions:

Tr
(
A`A`′

>
)

= δ``′ (24)∫
f`(τ)f`′(τ) dτ = δ``′ . (25)

We will refer to Eq. 23 as a “generalized SVD”. We now show that the pairs {A`, f`} are either
symmetric/even, or skew-symmetric/odd, as stated in Section 3.1. Let k̃(τ) = vec(K(τ)) ∈ RM2

be the vectorized cross-covariance matrix at time lag τ . Let P ∈ {0, 1}M2×M2

be the commutation

12

matrix operating on the vectorized space of all M2 pairs of outputs (i.e. the space of k̃), which
swaps index (i+ jM) with index (j + iM). In other words, for any matrix X ∈ RM×M , we have
that P vec(X) = vec

(
X>
)
. Let R be the reflection (or ‘time-reversal’) operator in L2, such that

R[f](τ) = f(−τ). It is easy to show that any multi-output cross-covariance function K(τ) obeys
the symmetry K(−τ) = K(τ)>, which can also be written as:

R[k̃](τ) = P k̃(τ) (26)

whereR[·] is applied elementwise to the element functions in k̃. In other words, reversing time and
transposing space are two equivalent operations. The generalized SVD in Eq. 23 can be written in
vectorized form as

k̃(τ) = (ã1, . . . , ãM2)︸ ︷︷ ︸
U

diag(λ1, . . . , λM2)︸ ︷︷ ︸
S

(f1(τ), . . . , fM2(τ))>︸ ︷︷ ︸
v(τ)

(27)

where ã` = vec(A`). Thus, the symmetry of Eq. 26 can be re-expressed as

(PU)S(R[ṽ](τ)) = USṽ(τ). (28)

Since the two permutation operators P and R preserve orthonormality (of matrices and square-
integrable functions, respectively), the l.h.s. of Eq. 28 is a valid SVD for K(τ). Furthermore, when
the singular values are distinct and kept in decreasing order, the generalized SVD of k̃(τ) is unique
up to a simultaneous change of sign in any pair (ã`, f`(·)). Therefore, we must have that

PU = U± (29)
R[ṽ](τ) = ±ṽ(τ) (30)

where ± is a (shared) diagonal matrix composed of +1 and −1 elements only. Importantly, the
matrix± is the same in the two equations. From the spatial transpose meaning of P and time-reversal
meaning ofR, Eqs. 29 and 30 therefore imply that for any `:

• if ±` = +1, then ã` is invariant to the transposition operator P and f`(·) is invariant to time
reversal, implying that A` is a symmetric matrix and f` is an even function,

• if ±` = −1, then both ã` and f` have their sign flipped by spatial transposition and time
reversal, respectively, implying thatA` is a skew-symmetric matrix and f` is an odd function.

The decomposition of Eq. 7 follows from a simple, now justified renaming of symmetric/even and
skew-symmetric/odd pairs as {A±` , f

±
` }. Moreover, we now see that the + (resp. −) terms in Eq. 27

correspond to the generalized SVD of the symmetric (resp. antisymmetric) part of the covariance
function, K(τ) +K(−τ) (resp. K(τ)−K(−τ)) in Eq. 18. Given the known relationship between
the squared Frobenius norm of a linear operator and the sum of its squared singular values, this shows
that the non-reversibility index ζ can also be calculated using Eq. 8.

C Construction of valid non-reversible planar kernels

Here, we prove that Eq. 9 is a valid 2-output covariance function. We focus the proof on the purely
spherical case, σ1 = σ2 = 1 and ρ = 0 – extension to arbitrary instantaneous covariances is
straightforward but notationally cumbersome (and a more general proof was in fact already given in
Section 3.3).

In the frequency domain, the Hilbert transform has a simple interpretation as a constant phase shift
of π/2 at all frequencies; specifically, Ĥ[f](ω) = −j · sgn(ω)f̂(ω), where ·̂ denotes the Fourier
transform and j2 = −1. As any scalar covariance function, f is even, and therefore f̂ is real and even.
In contrast, Ĥ[f] is imaginary and odd. We now derive the eigendecomposition of K(·), and show
that all eigenvalues are positive. Due to the hybrid nature of K(·) (discrete space, continuous time),
an eigenfunction of K(·) is a time-varying 2-dimensional “vector” [g1(t), g2(t)]> which satisfies∫ ∞

−∞
K(τ − t)

[
g1(τ)
g2(τ)

]
dτ = λ

[
g1(t)
g2(t)

]
(31)

13

or equivalently, ∫ ∞
−∞

[
f(τ)g1(τ + t) + αH[f](τ)g2(τ + t)
f(τ)g2(τ + t)− αH[f](τ)g1(τ + t)

]
dτ = λ

[
g1(t)
g2(t)

]
. (32)

Knowing that the eigenfunctions of any stationary scalar kernel are the Fourier modes, ejωt, we make
the following ansatz for the eigenfunctions of K(·):

g±ω (t) =

[
ejωt

b±e±jωt

]
for some b± ∈ C, (33)

(with the understanding that the two ± signs are “tied”, i.e. they are either both + or both −). Next,
we note that for any scalar function h and ω ∈ R,∫ ∞

−∞
h(τ)e±jω(t+τ)dτ = e±jωt

∫ ∞
−∞

h(τ)e±jωτdτ (34)

= e±jωt
∫ ∞
−∞

h(τ)e−j(∓ω)τdτ (35)

= e±jωtĥ(∓ω) (36)

where the last equality follows from the definition of the Fourier transform ĥ(·). Thus, for g±ω (t) to
be an eigenfunction of K(·) with eigenvalue λ±ω , b± must satisfy:

f̂(ω) + b±αĤ[f](∓ω) = λ±ω (37)

−αĤ[f](∓ω) + b±f̂(ω) = b±λ±ω (38)

(easily obtained from Eq. 32 and some straightforward algebra). Inserting Ĥ[f](ω) = −j ·
sgn(ω)f̂(ω), the above system of equations imply:

either b± = +j → λ±ω = (1− sgn(±ω)α) f̂(ω) (39)

or b± = −j → λ±ω = (1 + sgn(±ω)α)f̂(ω).

Since f is itself a valid kernel whose real eigenvalues f̂(ω) are all strictly positive, we conclude that
K(·) is a valid 2-output covariance function (i.e. all λ±ω ≥ 0) if, and only if, |α| ≤ 1.

This derivation also provides a key connection between our measure of second-order non-reversibility,
ζ, and one’s intuitive understanding that a maximally non-reversible process should never “turn back
on itself”. Specifically, we note that when |α| = 1, Eq. 39 implies that half of the eigenvalues of
K(·) are exactly zero. By inspection of the corresponding eigenfunctions in Eq. 32, we see that for
any sample trajectory (x1(t), x2(t))> from K(·), which must lie in the span of the eigenfunctions
with non-zero eigenvalues, the time-reversed trajectory (x1(−t), x2(−t)) evolves in the span of
the eigenfunctions with zero eigenvalues. Therefore, these time-reversed trajectories have zero
probability density under our non-reversible prior when |α| = 1; this extreme case corresponds to
ζ = 1, i.e. maximal non-reversibility (c.f. Eq. 10).

D Derivatives of special functions

Optimization of the hyperparameters requires evaluating the gradient of the marginal likelihood,
which in turn requires gradients of all the functions involved in the multi-output kernel. We give
details of the gradients for the functions listed in Table 1 and present them graphically in Fig. 5. These
gradients are simple to evaluate numerically, enabling the addition of our non-reversible kernels to
standard automatic differentiation systems.

Dawson function The Hilbert transform of the squared-exponential kernel involves the so-called
Dawson function, given below along with its derivative:

D(τ) , e−τ
2

∫ τ

0

es
2

ds
dD

dτ
= 1− 2τD(τ). (40)

14

Figure 5: Commonly used GP covariance functions and their Hilbert transforms. Please refer
to Table 1 for details.

Exponential integral The Hilbert transform of the exponential kernel involves the exponential
integral function:

Ei(τ) ,
∫ τ

−∞

es

s
ds

dEi
dτ

=
eτ

τ
. (41)

Faddeeva function The Hilbert transform of the spectral mixture kernel (Wilson and Adams,
2013) involves the imaginary component of the Faddeeva function w(·) (related to the complex error
function; Zaghloul and Ali, 2012). This is a new result that we derived which we were not able
to find in the existing literature. The Faddeeva function is available in most numerical computing
environments, and can be expressed as:

w(z) = V (x, y) + jL(x, y) with z = x+ jy (42)

where V (x, y) and L(x, y) are the real and imaginary Voigt functions respectively. Gradients are
given by:

∂L(x, y)

∂x
= −∂V (x, y)

∂y
= −2 Im[zw(z)] +

2√
π

(43)

and
∂L(x, y)

∂y
=

∂V (x, y)

∂x
= −2 Re[zw(z)]. (44)

Evaluating these expressions only requires evaluating the Fadeeva function itself.

E Beyond non-reversible planar processes: construction of
higher-dimensional non-reversible covariance functions

In Section 3.4, we built non-reversible M-output GP covariances as superpositions of planar kernels,
each associated with a (potentially) different scalar covariance function. Here, we introduce an
alternative construction motivated by the following considerations of model degeneracies. In Eq. 15,
if (i) the marginal variances in each plane are all identical (σij,1 = σij,2 = σ), (ii) each planar process
is spherical (ρij = 0) and (iii) the scalar covariance functions fij(τ) are all the same f , then K(τ) is
over-parametrized. Indeed, it can then be rewritten as

K(τ) ∝ IM︸︷︷︸
A+

f(τ) +


0 α12 α13 · · ·
−α12 0 α23 · · ·
−α13 −α23 0 · · ·

...
...

...
. . .


︸ ︷︷ ︸

A−

H[f](τ) (45)

Now, since A− is antisymmetric, there exists a unitary transformation of the latent space in which
this covariance becomes

K(τ) ∝ IMf(τ) +


0 ω1 0 0 · · ·
−ω1 0 0 0 · · ·

0 0 0 ω2 · · ·
0 0 −ω2 0 · · ·
...

...
...

. . .

H[f](τ) (46)

15

where {±jω1,±jω2, . . .} are the imaginary conjugate eigenvalues of A−. In GPFADS, this unitary
transformation can be absorbed in the mixing matrix C (Eq. 1). Thus, in this configuration, our model
does not truly possess M(M − 1)/2 free parameters as the parametrization of Eq. 15 suggests, but
only M/2, as Eq. 46 reveals. In other words, one can always rotate the latent space and directly
parametrize a set of independent planes – in which case one must enforce |ωi| < 1} to ensure positive
definiteness.

For these reasons, we also propose this alternative construction:

K(τ) =

Q∑
q=1

Uq


A

+
q1 0

. . .
0 A+

q2 0
. . . 0

. . .

 fq(τ) +

αq1A
−
q1 0

. . .
0 αq2A

−
q2 0

. . . 0
. . .

H[fq](τ)

U>q (47)

with some scalar covariance functions {fq(·)}, unitary matrices {Uq}, non-reversibility parameters
|αqi| < 1 associated with each of the M/2 planes, and 2× 2 matrix blocks {A+

qi, A
−
qi}. The latter

are parameterized exactly as the symmetric and antisymmetric matrices A+ and A− in Eq. 9. We
note that when such a kernel is used in GPFA, U1 can be set to the identity matrix without loss of
generality since it corresponds to a rotation of the latent space that can be absorbed in the mixing
matrix C (Eq. 1).

F Implementation notes and scalability

F.1 Stable computation of the log marginal likelihood

The log marginal likelihood in GPFA(DS) can be computed in a stable way as follows. Recall its
expression:

L(θ, Y) ∝ − log |Kyy| − (ỹ − µ⊗ 1T)>K−1yy (ỹ − µ⊗ 1T) (48)

with Kyy = (C ⊗ IT)Kxx(C> ⊗ IT) + (R⊗ IT) (49)

where both Kyy and µ depend on model parameters θ. A stable way to evaluate this is to begin with
a Cholesky decomposition of Kxx ∈ RMT×MT :

Kxx = LL> (50)

and then use the Woodbury identity to rewrite the inverse of Kyy ∈ RNT×NT as:

K−1yy = (R−1 ⊗ IT)− (R−1C ⊗ IT)
(
L−TL−1 + C>R−1C ⊗ IT

)−1
(C>R−1 ⊗ IT), (51)

which can be further transformed into:

K−1yy = (R−1/2 ⊗ IT)
(
IN ⊗ IT −A>B−1A

)
(R−1/2 ⊗ IT) (∈ RNT×NT) (52)

where A ≡ L>(C>R−1/2 ⊗ IT) (∈ RMT×NT) (53)

and B ≡ IDT +AA> = IDT + L>(C>R−1C ⊗ IT)L (∈ RMT×MT) (54)

Using the matrix determinant lemma, log |K−1yy | can be simplified to:

log |K−1yy | = log |(R−1/2 ⊗ IT)
[
IT ⊗ IN −A>B−1A

]
(R−1/2 ⊗ IT)| (55)

= 2 log |(R−1/2 ⊗ IT)|+ log |
[
IN ⊗ IT −A>B−1A

]
| (56)

= −T log |R|+ log |B −AA>|+ log |B−1| (57)
= −T log |R|+ log |IDT | − log |B| (58)
= −T log |R| − log |B| (59)
= −T log |R| − 2 log |W | (60)

where B = WW> is the Cholesky decomposition of matrix B. Thus, log |Kyy| is given by:

log |Kyy| = T log |R|+ 2 log |W | (61)

16

where log |R| =
∑
i logRii and log |W | =

∑
i logWii.

Finally, to compute products of the form K−1yy v, we will need to compute B−1v′ for some v′. To do
this stably and efficiently, we solve two successive triangular systems via back-substitution: we first
solve Wv′′ = v′ for v′′, and then solve W>z = v′′ for z which returns B−1v′.

This direct method of computing the marginal likelihood avoids loss of numerical precision by
never explicitly computing any inverse. Moreover, it costs O((MT)3), which is typically much
less than the naive O((NT)3). In Appendix F.2, we show how this cost can be further reduced to
O(TMN +MT log T) to enable large scale applications.

F.2 Scalability to very large datasets

Here, we show how to reduce both the computational complexity and memory requirements of
learning and inference in GP regression and GPFADS using the non-reversible kernels we have
proposed. The methods outlined below hinge on the ability to perform very fast matrix-vector
products with the Gram matrix, and contain a mix of well-known techniques and novel tricks to be
published elsewhere. We first describe a set of methodological building blocks that can be used to
scale up GP regression, and later explain how they apply to GPFADS too. Although the main text
focuses on theoretical concepts and small-scale applications that do not make use of these acceleration
techniques, we have implemented them to good effect.

Fast matrix-vector products with the Gram matrix

The full Gram matrix Kxx ∈ RMT×MT associated with the M -output covariance of Eq. 47 for
a specific set of T time bins is a sum of 2Q space-time Kronecker products of the form A ⊗ F
where A ∈ RM×M and F ∈ RT×T . This allows us to write efficient routines for matrix-vector
multiplication with the Gram matrix, by exploiting the identity (A ⊗ F) vec(V) = vec

(
F>V A

)
.

When the time bins are regularly spaced on a grid, then F is a Toeplitz matrix that can be embedded
in a circulant matrix (see below), enabling the computation of F>V products in O(MT log T).
Thus, the complexity of a Kxxvec(V) product can be reduced from the naive O(M2T 2) down to
O(Q(M2T + MT log(T))) (from now on, we will assume that log(T) dominates M , in which
case this complexity simplifies to O(QMT log(T)). Importantly, as we will see below, this way of
computing products allows us to lower the memory requirements by never storing the Gram matrix
(not even any of its T × T blocks).

To compute fast F>V products with any temporal Gram matrix F ∈ RT×T (e.g. associated with
fq(·) orH[fq](·) in Eq. 47), we use the fact that F is symmetric Toeplitz when the T time bins form
a regular grid (Wilson and Nickisch, 2015):

F =


f0 f1 · · · fT−2 fT−1
f1 f0 · · · fT−3 fT−2
...

...
. . .

... · · ·
fT−2 fT−3 · · · f0 f1
fT−1 fT−2 · · · f1 f0

 (62)

One can embed this T × T Toeplitz matrix F into a 2(T − 1)× 2(T − 1) circulant matrix Fc, every
column being a cyclically shifted version of the previous:

Fc =



f0 f1 · · · fT−2 fT−1 fT−2 · · · f1
f1 f0 · · · fT−3 fT−2 fT−1 · · · f2
...

... · · ·
...

...
... · · ·

fT−2 fT−3 · · · f0 f1 f2 · · · fT−1
fT−1 fT−2 · · · f1 f0 f1 · · · fT−2
fT−2 fT−1 · · · f2 f1 f0 · · · fT−3

...
... · · ·

...
...

... · · ·
f1 f2 · · · fT−1 fT−2 fT−3 · · · f0


,

[
F S
S> F ′

]
. (63)

Notice that all the information is contained within the first column, which we denote by f . This is
the only part of the matrix that needs to be stored explicitly. It is well known that products with a

17

circulant matrix can be performed in the Fourier domain as follows:

Fcz = DFT−1 [DFT(f)� DFT(z)] (64)

where DFT refers to the discrete Fourier transform and � denotes element-wise multiplication. Thus,
a product Fv can be computed by padding the vector v with zeroes to size 2(T − 1), then computing

Fc

[
v
0

]
=

[
Fv
S>v

]
(65)

and simply discarding the lower T − 2 elements. The DFT and inverse DFT of a T × 1 vector can be
computed efficiently in O(T log T) using the Fast Fourier transform (FFT). Thus Cz can be used to
exactly compute Kw for any w in O(T log T) computations and O(T) memory.

Fast and low-memory evaluation of the marginal likelihood and its gradient

Evaluating and differentiating the marginal likelihood in GP regression involves solving linear systems
of the form Kxxz = b for z, as well as computing log |Kxx| and its gradient. Here we describe a set
of old and new approaches to performing these computations at scale.

Solving Kxxz = b systems Computing the quadratic form in the GP log marginal likelihood, i.e.
solving linear systems of the formKxxz = b, can be done to numerical precision via (preconditioned)
conjugate gradients (CG; Cutajar et al., 2016). This iterative method only involves Kxx through
matrix-vector products, which are fast (cf. above) and do not necessitate the explicit computation
and storage of this large matrix. However, CG poses a problem when optimization is performed
with the help of automatic differentiation (AD) software, an otherwise very useful way of obtaining
gradients of the marginal likelihood. Naively backpropagating through every CG iteration incurs a
memory cost proportional to the number of CG iterations, which is often prohibitive (in our case, the
worst case would be MT iterations, bringing the memory requirements close to O(M2T 2), i.e. the
very cost of storing Kxx which we seek to avoid in the first place). We were not able to find ways to
circumvent this problem in the existing literature.

To mitigate the memory requirements of CG, we went back to basic AD principles and derived a
novel, constant-memory way of updating the adjoint of b and θ from the adjoint of z = Kxx(θ)−1x
obtained through CG iterations. We use the notation X = ∂L/∂X to denote the adjoint of X , where
L is the loss (or objective) function of interest. First, recall the chain rule:

θi = Tr

(
Kxx

> ∂Kxx

∂θi

)
. (66)

Next, for any CG solve z = K−1xx b in the forward pass, the adjoint of Kxx must be updated in
the reverse pass according to Kxx ← Kxx −K−>xx zz> (Giles, 2008). Thus, the update for θi (the
gradient we need for training the model) is

θi ← θi + Tr

[
z(−K−1xx z)>

∂Kxx

∂θi

]
. (67)

At this stage, although K−1xx z can itself be computed in the reverse pass using CG without storing
Kxx, Eq. 67 suggests that one would still need to compute and store ∂Kxx/∂θi, a matrix that is
just as large as Kxx. We reasoned that automatic differentiation libraries can be used in a slightly
unconventional way to evaluate Eq. 67 without ever explicitly representing neither Kxx nor its
gradient, as long as a memory-efficient matrix-vector product routine is available (which is a premise
for the use of CG, anyways). The key is to note that for a matrix-vector product d = Kxx(θ)e, the
adjoint of d is to be propagated back to that of θ according to (Giles, 2008):

θi ← θi + Tr

[
ed
> ∂Kxx

∂θi

]
. (68)

Thus, when a matrix-vector product with Kxx(θ) is computed under automatic differentiation, the
reverse pass will automatically update the parameter vector θ in the correct way given by Eq. 68 but
without representing ∂Kxx/∂θi explicitly. Critically, Eq. 68 has exactly the same form as Eq. 67.
By identifying terms, we see that implementing Eq. 67 can be done by performing a dummy matrix-
vector product d = Kxx(θ)e with e = z, and performing a reverse pass on this dummy operation,

18

taking care of “manually” seeding it with the adjoint d = −K−1xx z where z is obtained as part of the
primary reverse pass. Note that this requires hijacking the primary reverse-pass on the log marginal
likelihood computation, which can be done relatively easily in modern AD software (e.g. autograd,
Maclaurin et al., 2015).

Computing the log determinant and its gradient Exact computation of the log determinant is
generally difficult for large Gram matrices. However, stochastic estimators exist for both log |Kxx|
and its gradient that only require matrix-vector products with Kxx, again greatly alleviating the
memory burden. To estimate the log determinant, we use the approach advocated by Dong et al.
(2017) based on stochastic trace estimation (Filippone and Engler, 2015; Roosta-Khorasani and
Ascher, 2015):

log |Kxx| = Tr(logKxx) (69)

=
〈
ξ> log(Kxx)ξ

〉
ξ

(70)

where the expectation is over any spherical distribution p(ξ) with covariance equal to the identity
matrix (Hutchinson’s trace estimator). This expectation can be approximated with Monte Carlo
samples. For computing log(Kxx)ξ products in Eq. 70, we wish to exploit fast and memory-efficient
Kxxv products. One way of doing this, which we have not seen used in the GP literature, is to use the
following integral representation of the matrix logarithm (Davies and Higham, 2005; Wouk, 1965):

logKxx =

∫ 1

0

(Kxx − I) [tKxx + (1− t)I]
−1
dt (71)

Thus, we can estimate the log determinant ofKxx by drawing a set of P random vectors Ξ ∈ RMT×P

and using any numerical quadrature method to compute

log |Kxx| ≈
∫ 1

0

Tr
[
Z> (tKxx + (1− t)I)

−1
Ξ
]
dt with Z = (Kxx − I)Ξ. (72)

Here, the integrand can be computed via CG, based on matrix-vector products with Kxx. One can
substantially speed up CG convergence by initializing CG iterations at a given t with a previously
obtained solution at a neighbouring t′. Note that for ill-conditioned Kxx, solvers will typically need
to do more work for t near 1 – this is where adaptive solvers can help greatly.

Trace estimation also applies to the gradient of log |Kxx| (Cutajar et al., 2016; Dong et al., 2017):

∂ log |Kxx|
∂θi

= Tr

[
K−>xx

∂Kxx

∂θi

]
(73)

=

〈
ξ>K−>xx

∂Kxx

∂θi
ξ

〉
ξ

(74)

=

〈
Tr

[
ξ
(
K−1xx ξ

)> ∂Kxx

∂θi

]〉
ξ

(75)

As in the computation of the quadratic form in Eq. 67, Eq. 75 seems to require an explicit repre-
sentation of the large matrix ∂Kxx/∂θi. However, the same trick we introduced above can be used
here too to exploit the existing machinery of AD software to evaluate Eq. 75 without storing any
large matrix. Specifically, note that Eq. 75 has the exact same form as Eq. 68, such that it suffices to
compute a dummy matrix-vector product d = Kxxe with e = ξ and perform a dummy reverse pass
seeded with d = K−1xx ξ (obtained via CG).

In sum, these tricks reduce the complexity of estimating the model evidence and its gradient from
the naive O(M3T 3) to O(QMT log T) (potentially with a large constant pre-factor determined by
the number of CG iterations, hence the importance of good preconditioning; Cutajar et al., 2016).
Similarly, the memory requirements scale as O(M2T), instead of O(M2T 2).

Accelerating GPFADS

In GPFADS, since Kyy = (C ⊗ IT)Kxx(C> ⊗ IT) + R ⊗ IT , efficient products with Kxx also
lead to efficient products with Kyy which do not necessitate explicit storage of Kyy. Therefore, the

19

techniques described above apply to GPFADS directly. With C ∈ RM×N , computing a (C> ⊗ IT)v
product costs O(MNT), and subsequent multiplication by Kxx costs O(QMT log T) as detailed
above. Thus, the cost of a Kyyv product – which dominates the complexity of training the GP
model and computing posteriors – is O(MNT +QMT log T) overall. The memory requirement is
O(NT +M2T) (for small latent spaces, this is close to the cost of storing a data point in the first
place).

G Relation to Parra and Tobar (2017)

We are only aware of one other paper introducing a non-reversible GP kernel (Parra and Tobar, 2017).
Here, we outline the key differences between their models and ours, and show how our construction
affords both a cleaner handle on reversibility, and better scalability properties.

Parra and Tobar (2017)’s model extended the spectral mixture model (Wilson and Adams, 2013) to
the multi-output setting. In their model, the cross-spectrum of any two variables i and j is given by:

E
[
xi(ω)xj(ω)

]
=
wij
2

(
e
−

(ω−µij)
2

2σij
+j(θijω+φij)

+ e
−

(−ω−µij)
2

2σij
+j(−θijω+φij)

)
, (76)

where φij is a phase lag and θij is a pure delay. The parameters µij , σij and wij are directly
constrained by the marginal spectrum of the two variables (spectral mixture) ensuring that the
resulting multi-output covariance function be positive definite.

In the time domain, this leads to the following real-valued cross-covariance function:

Kij(τ) = wij (2πσij) exp
(
−σij

2
(τ + θij)

2
)

cos((τ + θij)µij + φij). (77)

A first notable difference between this kernel and ours lies in the ability – or lack thereof – to break
reversibility at low frequencies. Indeed when there are no hard delays (θij = 0), the Parra and Tobar
(2017) model becomes fully reversible in the limit of a non-resonant process (one whose power
spectrum has its maximum at ω = 0, modeled by setting µij = 0 in Eq. 76), no matter the choice of
phase lag parameters φij . Indeed, the non-reversibility index ζ is tied to the number of oscillatory
cycles that fit within the envelope of the autocovariance function (Fig. 5, right). In contrast, our
construction retains non-reversibility in this limit, because the Hilbert transform implies a constant
phase lag at all frequencies. For example, the non-reversible squared-exponential planar covariance
shown in Fig. 1 has full non-reversibility despite a complete lack of marginal oscillations in each
output.

The second major difference lies in the opportunity – or lack thereof – to scale learning and inference
to very large datasets. As explained in Appendix F.2, all kernels in the family that we propose take
the form of a sum of space/time-separable terms, implying a specific sum-of-Kronecker-products
structure for the associated Gram matrices. In contrast, Parra and Tobar (2017)’s model can never be
expressed in Kronecker form, if reversibility is to be broken via the introduction of non-zero phase
lags. In other words, to our knowledge, we have presented the first non-reversible multi-output kernel
that can realistically support scalable learning and inference on very large datasets.

References
Crane, D. K., Gockenbach, M. S., and Roberts, M. J. (2020). Approximating the singular value

expansion of a compact operator. SIAM Journal on Numerical Analysis, 58(2):1295–1318.

Cutajar, K., Osborne, M., Cunningham, J., and Filippone, M. (2016). Preconditioning kernel matrices.
In International Conference on Machine Learning, pages 2529–2538.

Davies, P. I. and Higham, N. J. (2005). Computing f (a) b for matrix functions f. In QCD and
numerical analysis III, pages 15–24. Springer.

Dong, K., Eriksson, D., Nickisch, H., Bindel, D., and Wilson, A. G. (2017). Scalable log determinants
for Gaussian process kernel learning. In Advances in Neural Information Processing Systems,
pages 6327–6337.

20

Filippone, M. and Engler, R. (2015). Enabling scalable stochastic gradient-based inference for
gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE). arXiv preprint
arXiv:1501.05427.

Giles, M. B. (2008). Collected matrix derivative results for forward and reverse mode algorithmic
differentiation. In Advances in Automatic Differentiation, pages 35–44. Springer.

Horn, R. A. and Johnson, C. R. (2012). Matrix analysis. Cambridge university press.

Maclaurin, D., Duvenaud, D., and Adams, R. P. (2015). Autograd: Effortless gradients in numpy. In
ICML 2015 AutoML Workshop, volume 238.

Parra, G. and Tobar, F. (2017). Spectral mixture kernels for multi-output Gaussian processes. In
Advances in Neural Information Processing Systems, pages 6681–6690.

Roosta-Khorasani, F. and Ascher, U. (2015). Improved bounds on sample size for implicit matrix
trace estimators. Foundations of Computational Mathematics, 15:1187–1212.

Wilson, A. and Adams, R. (2013). Gaussian process kernels for pattern discovery and extrapolation.
In International conference on machine learning, pages 1067–1075.

Wilson, A. and Nickisch, H. (2015). Kernel interpolation for scalable structured Gaussian processes
(kiss-gp). In International Conference on Machine Learning, pages 1775–1784.

Wouk, A. (1965). Integral representation of the logarithm of matrices and operators. Journal of
Mathematical Analysis and Applications, 11:131–138.

Zaghloul, M. R. and Ali, A. N. (2012). Algorithm 916: computing the Faddeyeva and Voigt functions.
ACM Transactions on Mathematical Software (TOMS), 38(2):1–22.

21

	Introduction
	Background: Gaussian Process Factor Analysis (GPFA)
	Nonreversible Gaussian processes
	Quantifying non-reversibility and decomposing multi-output GP covariances
	Planar non-reversible processes
	Fourier domain interpretation
	Higher-dimensional non-reversible priors

	Experiments
	Non-reversible GP priors better capture dynamics
	GPFADS: recovering embedded latent dynamical systems
	Uncovering rotational dynamics in M1

	Discussion
	Broader impact
	Boundedness of the reversibility index
	General Kronecker decomposition of stationary multi-output covariances
	Construction of valid non-reversible planar kernels
	Derivatives of special functions
	Beyond non-reversible planar processes: construction of higher-dimensional non-reversible covariance functions
	Implementation notes and scalability
	Stable computation of the log marginal likelihood
	Scalability to very large datasets

	Relation to Parra and Tobar (2017)

